首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, functionally graded (FG) aluminum alloy matrix in-situ composites (FG-AMCs) with TiB2 and TiC reinforcements were synthesized using the horizontal centrifugal casting process. A commercial Al-Si alloy (A356) and an Al-Cu alloy were used as matrices in the present study. The material parameters (such as matrix and reinforcement type) and process parameters (such as mold temperature, mold speed, and melt stirring) were found to influence the gradient in the FG-AMCs. Detailed microstructural analysis of the composites in different processing conditions revealed that the gradients in the reinforcement modify the microstructure and hardness of the Al alloy. The segregated in-situ formed TiB2 and TiC particles change the morphology of Si particles during the solidification of Al-Si alloy. A maximum of 20 vol pct of reinforcement at the surface was achieved by this process in the Al-4Cu-TiB2 system. The stirring of the melt before pouring causes the reinforcement particles to segregate at the periphery of the casting, while in the absence of such stirring, the particles are segregated at the interior of the casting.  相似文献   

2.
A combination of electron channeling contrast (ECC) and electron backscatter diffraction pattern (EBSP) techniques has been used to follow in situ the migration during annealing at 323 K (50 °C) of a recrystallizing boundary through the deformed matrix of high-purity aluminum rolled to 86 pct reduction in thickness. The combination of ECC and EBSP techniques allows both detailed measurements of crystallographic orientations to be made, as well as tracking of the boundary migration with good temporal resolution. The measured boundary velocity and the local boundary morphology are analyzed based on calculations of local values for the stored energy of deformation. It is found that the migration of the investigated boundary is very complex with significant spatial and temporal variations in its movement, which cannot directly be explained by the variations in stored energies, but that these variations relate closely to local variations within the deformed microstructure ahead of the boundary, and are found related to the local spatial arrangements and misorientations of the dislocation boundaries. The results of the investigation suggest that local analysis, on the micrometer length scale, is necessary for the further understanding of recrystallization boundary migration mechanisms.  相似文献   

3.
The HASTELLOY C2000 superalloy is a commercially designed superalloy manufactured to function in reducing and oxidizing corrosive solutions. The industrial applications have tremendous potential in automotive, structural, aviation, and storage components. Although C2000 demonstrates good reducing and oxidizing traits in extremely aggressive media (which are attractive features of its chemistry), changes in the mechanical properties are believed to be insignificant due to its strong propensity to passivate under corrosive conditions. The ductility behavior and corrosion properties of C2000 are superior to those of stainless steels. The objective of the present study is to examine the corrosion-fatigue behavior of C2000 in a 3.5 wt pct sodium-chloride (NaCl) solution. C2000 submerged in 3.5 wt pct NaCl at room temperature is not susceptible to localized corrosion, such as pitting, during fatigue. At an accelerated potential of 350 mV, the current responses show an increase in the current due to slip steps emerging to the surface as a result of fatigue. The crack-initiation site and the examination of the fracture morphology are discussed. This article is based on a presentation given in the symposium entitled “Deformation and Fracture from Nano to Macro: A Symposium Honoring W.W. Gerberich’s 70th Birthday,” which occurred during the TMS Annual Meeting, March 12–16, 2006 in San Antonio, Texas and was sponsored by the Mechanical Behavior of Materials and Nanomechanical Behavior Committees of TMS.
R.V. Steward (Graduate Student, Materials Scientist/Engineer)Email: Email:
  相似文献   

4.
Duplex stainless steels are designed to solidify with ferrite as the parent phase, with subsequent austenite formation occurring in the solid state, implying that, thermodynamically, a fully ferritic range should exist at high temperatures. However, computational thermodynamic tools appear currently to overestimate the austenite stability of these systems, and contradictory data exist in the literature. In the present work, the high-temperature phase equilibria of four commercial duplex stainless steel grades, denoted 2304, 2101, 2507, and 3207, with varying alloying levels were assessed by measurements of the austenite-to-ferrite transformation at temperatures approaching 1673 K (1400 °C) using a novel in-situ neutron scattering approach. All grades became fully ferritic at some point during progressive heating. Higher austenite dissolution temperatures were measured for the higher alloyed grades, and for 3207, the temperature range for a single-phase ferritic structure approached zero. The influence of temperatures in the region of austenite dissolution was further evaluated by microstructural characterization using electron backscattered diffraction of isothermally heat-treated and quenched samples. The new experimental data are compared to thermodynamic calculations, and the precision of databases is discussed.  相似文献   

5.
An in-situ neutron diffraction technique was used to investigate the lattice strain distributions and micromechanical behavior in a friction stir welded (FSW) sheet of AA7475-T761. The neutron diffraction experiments were performed on the spectrometer for material research, STRESS-SPEC, at FRM II (Garching, Germany). The lattice strain profiles around the weld center were measured as a function of the applied strain during the tensile loading and unloading. The anisotropic elastic and plastic properties of the FSW aluminum alloy were simulated by elasto-plastic self-consistent (EPSC) model to predict the anisotropic deformation behaviors involving the grain-to-grain interactions. Material parameters used for describing the constitutive laws of each test position were determined from the measured lattice strain distributions for different diffraction hkl planes as well as the macroscopic stress-strain curve of the FSW aluminum alloy. A good agreement between experimental results and numerical simulations was obtained. The present investigations provided a reliable prediction of the anisotropic micromechanical behavior of the FSW aluminum alloy during tensile deformation.  相似文献   

6.
Based on the Wilson equation, extended Miedema model, and hard sphere theory, new models are developed theoretically only using the quantities of the pure component and are applied to investigate the thermodynamical and kinetic effect of alloying additions on in-situ AlN formation via displacement reaction in Mg-Al alloy melt. The results show that the alloying additions such as Si, Zn, and Cu can promote the formation of AlN in Mg-Al melt both in thermodynamics and kinetics. Meanwhile, other elements, including Mn, Nd, Ce, Ni, and La, must be matched properly in order to produce the desired reinforcement AlN in liquid Mg-Al melt.  相似文献   

7.
Quick preheating treatment of the Al-Ti-C pellets and high-intensity ultrasonic vibration are introduced in the fabrication of in-situ TiC p /Mg composites. Al-Ti-C pellets are preheated for about 130 seconds in the furnace at 1023 K (750 °C), in which magnesium is melted as well. In this process, plenty of heat can be accumulated due to the reactive diffusion between liquid aluminum and solid titanium in Al-Ti-C, and a small amount of Al3Ti phase is formed as well. After adding the preheated Al-Ti-C into the molten magnesium, thermal explosion takes place in a few seconds. In the meantime, high-intensity ultrasonic vibration is applied into the melt to disperse in-situ formed TiC particles into the matrix and degas the melt as well. Microstructural characterization indicates that in-situ formed TiC particles are spherical in morphology and smaller than 2 μm in size. Furthermore, a homogeneous microstructure with low porosity of the magnesium composite is obtained due to the effect of ultrasonic vibration. A novel approach using the quick preheating treatment technique and high-intensity ultrasonic vibration to synthesize in-situ TiC p /Mg composites is proposed in our research.  相似文献   

8.
Coarsening within the mushy zone during continuous directional solidification experiments was studied on an Al-30 wt pct Cu alloy. High brilliance synchrotron X-radiation microscopy allowed images to be taken in-situ during solidification. Transient conditions were present during directional solidification. Under these conditions, solute-rich settling liquid flow affects the dendritic array and thus coarsening. Coarsening was studied by following the secondary dendrite arm spacing (SDAS) of a developing dendrite at different local solidification times according to the mush depth and instant interface velocity. Solute enrichment and liquid flow cause deceleration and acceleration of the solidification front, which in turn influences both the mush depth and local growth and coarsening due to variations in solutal gradients and thus local undercooling. In addition, spacing between neighboring dendrites (i.e., primary dendrite arm spacing), which determines permeability within the mushy zone, affects the development of high-order branches. This article is based on a presentation given at the International Symposium on Liquid Metal Processing and Casting (LMPC 2007), which occurred in September 2007 in Nancy, France.  相似文献   

9.
Crystal structures of room-temperature ionic liquid (RTIL)-H2O mixtures are determined by the X-ray diffraction method. The RTIL is N,N-diethyl-N-methyl-N-2-methoxyethyl ammonium tetrafluoroborate, [DEME][BF4]. At 0.9 mol pct H2O, two kinds of superstructures occur simultaneously without a strain. Also, the volume of the unit cell is very small only at 0.9 mol pct additives. This relates to the composite domain structure, including a twin-related one, as an elastic anomaly. At other water concentrations, such an extraordinary behavior is not observable. By assuming a sublattice having an equivalent lattice constant, a water network at 1 mol pct H2O is simulated using a Monte Carlo (MC) method. The network develops over the medium range in the simulation box.  相似文献   

10.
A Nb-stabilized Fe-15Cr-0.45Nb-0.010C-0.015N ferritic stainless steel is studied with transmission electron microscopy (TEM) to investigate the morphology and kinetics of precipitation. Nbx(C,N)y\hbox{Nb}_{x}\hbox{(C,N)}_y and MnS precipitates are present in the steel in the initial condition. Ex-situ TEM analysis is performed on samples heat treated at 973 K, 1073 K, 1173 K, and 1273 K (700 °C, 800 °C, 900 °C, and 1000 °C). Within this temperature range, both Fe2Nb\hbox{Fe}_2\hbox{Nb} and Fe3Nb3Xx\hbox{Fe}_{3}\hbox{Nb}_{3}\hbox{X}_{x} (with X = C or N) precipitates form. Fe2\hbox{Fe}_2Nb is observed at 1073 K (800 °C).   Fe3Nb3Xx\;\hbox{Fe}_{3}\hbox{Nb}_{3}\hbox{X}_{x} precipitates form at the grain boundaries between 973 K and 1273 K (700 °C and 1000 °C). Up to at least 1173 K (900 °C) their fraction increases with time and temperature, but at 1273 K (1000 °C) they lose stability with respect to Nbx(C,N)y.\hbox{Nb}_{x}\hbox{(C,N)}_{y}. With in-situ TEM, no phase transition is observed between room temperature and 1243 K (970 °C). At 1243 K (970 °C) the precipitation of Fe3Nb3Xx\hbox{Fe}_{3}\hbox{Nb}_{3}\hbox{X}_{x} is observed in the neighborhood of a dissolving Nb2\hbox{Nb}_2(C,N) precipitate. For sections of grain boundaries where no Nbx(C,N)y\hbox{Nb}_x\hbox{(C,N)}_y precipitates are present, Fe3Nb3Xx\hbox{Fe}_3\hbox{Nb}_3\hbox{X}_{x} does not form. It is concluded that the precipitation of Fe3Nb3Xx\hbox{Fe}_{3}\hbox{Nb}_{3}\hbox{X}_x is directly related to the dissolution of Nb2\hbox{Nb}_2(C,N) through the redistribution of C or N.  相似文献   

11.
A formula is derived to accurately describe the tabulated relation between the Brinell (HB) and Vickers (HV) hardnesses of steel over the entire range of their possible variation. This formula and the formulas describing the relation between the HB hardness of chromium–molybdenum and chromium–nickel steels and their ultimate tensile strength σu are used to analyze the change in σu of 38KhNM steel upon quenching and tempering. The data that reveal a relation between σu of 38KhNM steel and its coercive force are obtained.  相似文献   

12.
The full information on the changes in many crystallographic aspects, including the structural and microstructural characterizations, during the phase transformation is essential for understanding the phase transition and “memory” behavior in the ferromagnetic shape-memory alloys. In the present article, the defects-related microstructural features connected to the premartensitic and martensitic transition of a Ni2MnGa single crystal under a uniaxial pressure of 50 MPa applied along the [110] crystallographic direction were studied by the in-situ high-energy X-ray diffuse-scattering experiments. The analysis of the characteristics of diffuse-scattering patterns around different sharp Bragg spots suggests that the influences of some defect clusters on the pressure-induced phase-transition sequences of Ni2MnGa are significant. Our experiments show that an intermediate phase is produced during the premartensitic transition in the Ni2MnGa single crystal, which is favorable for the nucleation of a martensitic phase. The compression stress along the [110] direction of the Heusler phase can promote the premartensitic and martensitic transition of the Ni2MnGa single crystal. This article is based on a presentation given in the symposium entitled “Neutron and X-Ray Studies for Probing Materials Behavior,” which occurred during the TMS Spring Meeting in New Orleans, LA, March 9–13, 2008, under the auspices of the National Science Foundation, TMS, the TMS Structural Materials Division, and the TMS Advanced Characterization, Testing, and Simulation Committee.  相似文献   

13.
Time-dependent plastic deformation through stress relaxation and creep deformation during in-situ cooling of the as-cast single-crystal superalloy CMSX-4® has been studied via neutron diffraction, transmission electron microscopy, electro-thermal miniature testing, and analytical modeling across two temperature regimes. Between 1000 °C and 900 °C, stress relaxation prevails and gives rise to softening as evidenced by a decreased dislocation density and the presence of long segment stacking faults in γ phase. Lattice strains decrease in both the γ matrix and γ′ precipitate phases. A constitutive viscoplastic law derived from in-situ isothermal relaxation test under-estimates the equivalent plastic strain in the prediction of the stress and strain evolution during cooling in this case. It is thereby shown that the history dependence of the microstructure needs to be taken into account while deriving a constitutive law and which becomes even more relevant at high temperatures approaching the solvus. Higher temperature cooling experiments have also been carried out between 1300 °C and 1150 °C to measure the evolution of stress and plastic strain close to the γ′ solvus temperature. In-situ cooling of samples using ETMT shows that creep dominates during high-temperature deformation between 1300 °C and 1220 °C, but below a threshold temperature, typically 1220 °C work hardening begins to prevail from increasing γ′ fraction and resulting in a rapid increase in stress. The history dependence of prior accumulated deformation is also confirmed in the flow stress measurements using a single sample while cooling. The saturation stresses in the flow stress experiments show very good agreement with the stresses measured in the cooling experiments when viscoplastic deformation is dominant. This study demonstrates that experimentation during high-temperature deformation as well as the history dependence of the microstructure during cooling plays a key role in deriving an accurate viscoplastic constitutive law for the thermo-mechanical process during cooling from solidification.  相似文献   

14.
Better understanding of agglomeration behavior of nonmetallic inclusions in the steelmaking process is important to control the cleanliness of the steel. In this work, a revision on the Paunov simplified model has been made according to the original Kralchevsky–Paunov model. Thus, this model has been applied to quantitatively calculate the attractive capillary force on inclusions agglomerating at the liquid steel/gas interface. Moreover, the agglomeration behavior of Al2O3 inclusions at a low carbon steel/Ar interface has been observed in situ by high-temperature confocal laser scanning microscopy (CLSM). The velocity and acceleration of inclusions and attractive forces between Al2O3 inclusions of various sizes were calculated based on the CLSM video. The results calculated using the revised model offered a reasonable fit with the present experimental data for different inclusion sizes. Moreover, a quantitative comparison was made between calculations using the equivalent radius of a circle and those using the effective radius. It was found that the calculated capillary force using equivalent radius offered a better fit with the present experimental data because of the inclusion characteristics. Comparing these results with other studies in the literature allowed the authors to conclude that when applied in capillary force calculations, the equivalent radius is more suitable for inclusions with large size and irregular shape, and the effective radius is more appropriate for inclusions with small size or a large shape factor. Using this model, the effect of inclusion size on attractive capillary force has been investigated, demonstrating that larger inclusions are more strongly attracted.  相似文献   

15.
The mechanochemical preparation of nickel aluminide/corundum (Ni x Al y /Al2O3) powder nanocomposites is shown to be possible during the mechanochemical aluminum reduction of nickel oxide at various weight proportions of the components.  相似文献   

16.
A combination of in-situ neutron diffraction and elastoplastic self-consistent (EPSC) modeling have been used to elucidate the role played by intergranular stresses in the Bauschinger effect in B2 structured CoZr at room temperature and 423 K (150 °C). It is shown that, when insufficient slip modes are present to accommodate arbitrary strains, the large intergranular stresses built up due to inhomogeneous plastic deformation are responsible for the observed Bauschinger effect. Upon the onset of secondary deformation mechanism(s), the stresses are more uniformly distributed among the grains and the influence of intergranular stresses on the Bauschinger effect diminishes. On the other hand, it is speculated that the contribution of intragranular (dislocation-based) stresses is responsible for the persistent Bauschinger effect past the transition point. Similar results are obtained at both room temperature and 423 K (150 °C), and while the yield strength decreases with temperature, the high-temperature stress-strain curve progressively becomes harder than the room temperature one. In light of this, the previously characterized yield strength anomaly in CoZr has been re-examined.  相似文献   

17.
Compact ceramic materials based on the Mn + 1AX n phases in the Ti-Cr-Al-C system are produced by forced self-propagating high-temperature synthesis (SHS) compaction. The mechanisms of the structure and phase formation in synthetic products, as well as the combustion macrokinetics of the SHS mixture, are studied. Complex investigations of the structure, phase composition, and physical and mechanical properties of new Ti2 ? x Cr x AlC ceramic materials synthesized at different charging parameters (x = 0, 0.5, 1, 1.5, and 2) are performed. The highest content (96–98%) of the Mn + 1AX n phase in the composition of synthetic products is found to be in samples where just one of the host elements (titanium (x = 0) or chromium (x = 2)) is present. The produced materials have a high heat resistance, and the increase in the chromium concentration is favorable to an appreciable growth in resistance to high-temperature oxidation.  相似文献   

18.
A lath martensite steel containing 0.22 mass pct carbon was analyzed in situ during tensile deformation by high-resolution time-of-flight neutron diffraction to clarify the large work-hardening behavior at the beginning of plastic deformation. The diffraction peaks in plastically deformed states exhibit asymmetries as the reflection of redistributions of the stress and dislocation densities/arrangements in two lath packets: soft packet, where the dislocation glides are favorable, and hard packet, where they are unfavorable. The dislocation density was as high as 1015 m?2 in the as-heat-treated state. During tensile straining, the load and dislocation density became different between the two lath packets. The dislocation character and arrangement varied in the hard packet but hardly changed in the soft packet. In the hard packet, dislocations that were mainly screw-type in the as-heat-treated state became primarily edge-type and rearranged towards a dipole character related to constructing cell walls. The hard packet played an important role in the work hardening in martensite, which could be understood by considering the increase in dislocation density along with the change in dislocation arrangement.  相似文献   

19.
The effects of changes in test temperature (−196 °C to 25 °C) and grain size (40 to 165 μm) on the dynamic cleavage fracture toughness (K ID ) and Charpy impact toughness of polycrystalline niobium (Nb) have been investigated. The ductile-to-brittle transition was found to be affected by both changes in grain size and the severity of stress concentration (i.e., notch vs fatigue-precrack). In addition to conducting impact tests on notched and fatigue-precracked Charpy specimens, extensive fracture surface analyses have been performed in order to determine the location of apparent cleavage nucleation sites and to rationalize the effects of changes in microstructure and experimental variables on fracture toughness. Existing finite element analyses and the stress field distributions ahead of stress concentrators are used to compare the experimental observations with the predictions of various fracture models. The dynamic cleavage fracture toughness, K ID , was shown to be 37±4 MPa√m and relatively independent of grain size (i.e., 40 to 105 μm) and test temperature over the range −196 °C to 25 °C.  相似文献   

20.
Laser-induced breakdown spectroscopy (LIBS) has shown promise as a technique to quickly determine molten metal chemistry in real time. Because of its characteristics, LIBS could also be used as a technique to sense for unwanted inclusions and impurities. Simulated Al2O3 inclusions were added to molten aluminum via a metal-matrix composite. LIBS was performed in situ to determine whether particles could be detected. Outlier analysis on oxygen signal was performed on LIBS data and compared to oxide volume fraction measured through metallography. It was determined that LIBS could differentiate between melts with different amounts of inclusions by monitoring the fluctuations in signal for elements of interest. LIBS shows promise as an enabling tool for monitoring metal cleanliness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号