首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The sulfidation behavior of Co-Mo-X alloys, where X is Al, Cr, Mn, or Ti, has been studied over the temperature range 600 or 700°C to 900°C in 10–2 atm. sulfur vapor to determine the effectiveness of the various ternary elements at reducing the sulfidation rate relative to Co-Mo alloys. For comparative purposes, each ternary alloy contained a constant atomic proportion (i.e., 55Co, 20Mo, and 25X). All of the alloys were multiphase, and sulfidized to form complex, multilayered scales. The scales usually consisted of an outer layer of cobalt sulfide, an intermediate layer that contained primarily the ternaryelement sulfide, and an inner layer which was heterophasic. Usually, each phase within the multiphase alloy sulfidized independently of one another. In the region of the alloy/scale interface there was often a narrow band of fine porosity (transitional band) together with fine precipitates that separated the inner sulfide from the base alloy. It was found that Al and Cr improved the sulfidation resistance of the Co-Mo binary alloy, whereas Mn had the opposite effect. The Ti-containing alloy underwent a mixed sulfidation/oxidation process, so that its kinetics were inapplicable. Aluminum was found to exert the most beneficial effect. The sulfidation behavior of Co-Mo-Al alloys containing a range of Al concentrations was studied at both 700 and 900°C. It was found that for Al to be effective, a sufficient amount of the spinel, Al0.55Mo2S4, had to form within the inner portion of the scale.  相似文献   

2.
Fe-30Mo alloys containing up to 9.1 wt% Al were sulfidized at 0.01 atm sulfur vapor over the temperature range of 700–900°C. The sulfidation kinetics followed the parabolic rate law for all alloys at all temperatures. For alloys containing small and intermediate amounts of Al (<4.8 wt.%), a duplex sulfide scale formed. The outer layers of the scales were found to be relatively compact FeS in all cases; whereas the inner layers were composed of the layered compound MoS 2 (intercalated with iron), the Chevrel compound Fe x Mo 6 S 8,a spinel double sulfide Al x Mo 2 S 4,depending on the Al content of the alloy and the sulfidation temperature. Extremely thin scales were found on the alloys with higher Al contents. Accordingly, extremely slow sulfidation rates were observed—even slower than the sulfidation rate of pure Mo. The transition of the sulfidation kinetics from a high-rate active mode to a low-rate passive mode requires both a critical Al content in the alloy and a critical Mo content. Because of the two-phase nature of the alloys, the latter requirement implies a critical volume fraction of the intermetallic second-phase in the alloy, which has been known as the multiphase effect. Interestingly, the multiphase effect in these alloys was also a function of the Al content in the alloys.  相似文献   

3.
The corrosion behavior of Co-15 at.% Mo alloys containing up to 20at.% Al in gaseous H 2 -H 2 O-H 2 S mixtures was studied over the temperature range of 600–900°C. The corrosion kinetics of all alloys followed the parabolic rate law over the temperature range of interest. Corrosion resistance increased with increasing aluminum content. Complex scales formed on the alloys, consisting of an outer layer of cobalt sulfide and a heterophasic inner layer. Al 2 O 3 formed only at high temperatures in alloys having aluminum additions of 15at.% or more. The absence of Al 2 O 3 in some cases is due to the small volume fraction of the intermetallic phase CoAl in the alloys and the nature of the slow growth rate of Al 2 O 3.Improvement in corrosion resistance is attributed to the presence of a ternary sulfide, Al 0.55 Mo 2 S 4,and Al 2 O 3 in the inner layer.  相似文献   

4.
Iron-molybdenum alloys containing up to 40 wt.% molybdenum were exposed to sulfur vapor at a partial pressure of 0.01 atm at temperatures of 600–900°C. Sulfidation kinetics were measured over periods of up to 8 hr using a quartz-spring thermogravimetric method. The sulfidation kinetics of all alloys studied obeyed the parabolic rate law. The sulfidation rate of iron was found to be reduced by factors of 60 at 900°C and 120 at 600°C by the addition of 40 wt.% molybdenum. Duplex sulfide scales formed on all alloys at all temperatures, the scales consisting of an inner layer of mostly MoS2 and an outer layer of FeS. Platinum markers were located at the interface between the outer and inner scales, showing that outward iron diffusion and inward sulfur diffusion through the inner layer occurred. The improved sulfidation resistance was attributed to the formation of the MoS2, which acted as a partially protective barrier to the diffusion of the reacting species. Sulfidation activation energies were found to range from 24.3 to 28.5 kcal mole for the alloys compared to 20.6 kcal/mole, for pure iron. The rate-controlling step was outward iron diffusion through the outer iron sulfide layer.  相似文献   

5.
The sulfidation behavior of Co-Mo alloys containing up to 40 wt.% Mo was studied over the temperature range 600–900°C in both 10–2 and 10–4 atm. sulfur vapor. All of the alloys were two-phase, with the alloys containing up to 30Mo consisting of Co3Mo plus solid-solution Co, and the Co-40Mo alloy consisting of the two intermetallic compounds, Co3Mo and Co7Mo6. The sulfide scales which formed were duplex, with an outer layer of cobalt sulfide and a complex, heterophasic inner layer whose phases were both composition- and temperature-dependent. The parabolic rate constant for the sulfidation kinetics decreased with increasing Mo content at all temperatures investigated. Three activation energies, all different from that of pure Co, were observed. Furthermore, Co-30Mo exhibited a kinetics inversion between 800 and 850°C. This inversion was largely the result of the formation of an innermost layer of Co1.62Mo6S8 at the high temperatures. Specifically, the presence of this sulfide in the inner scale caused a significant decrease in the growth rate of the outer layer of cobalt sulfide. In fact, formation of a more compact, innermost layer of Co1.62Mo6S8 at 900°C compared to that at 850°C resulted in a negative activation energy for the growth of the cobalt sulfide in this temperature range. The variation in the activation energies was due to both the duplex nature of the scales which formed and the phase constitution of the inner scale. A simple model has been developed to explain the changes in the activation energies. At 800°C the sulfidation rate of the Co-Mo alloys was essentially the same at the two sulfur pressures studied. The predominant phase in the inner layer of Co-10Mo and Co-20Mo was CoMoS3, while for Co-30Mo and Co-40Mo it was MoS2. However, in the case of the latter alloys, Co1.62Mo3S4 formed in the region of the alloy/scale interface at temperatures 850°C and above. Although the MoS2, which had formed on Co-40Mo, appeared to be a continuous layer, it was in fact found to be relatively nonprotective. Platinummarker experiments revealed the position of the original metal surface to be the interface between the inner and outer scales.  相似文献   

6.
The corrosion behavior of seven Ni-Mo-Al alloys was investigated over the temperature range of 600–950°C in a mixed-gas atmosphere of H 2/H 2O/H 2 S. The parabolic law was followed at low temperatures, while linear kinetics were generally observed at higher temperatures. At a fixed Mo content, the transition from parabolic to linear kinetics shifted to higher temperature with increasing Al concentration. Double-layered scales generally formed on alloys having a low Al content, consisting of an outer layer of nickel sulfide and a complex inner scale. The thickness of the outer scale and the inner scale decreased as the Al content increased. The outer scale became porous and discontinuous with increasing Al content and temperature. Al 2 O 3 was detected in the scales of all alloys corroded at higher temperatures ( 800°C), even though the amount of Al 2 O 3 was very small in some cases. The decrease in corrosion rate with increasing Al content may be attributed to the formation of Al 2 O 3,Al 0.55 Mo 2 S 4,and Al 2 S 3 in the inner scale.  相似文献   

7.
The corrosion behavior of Ni-Mo alloys containing up to 40 wt.% Mo was studied over the temperature range of 550–800C in a mixed gas of H2/H2O/ H2S. The scales formed on all alloys contained only sulfides and were doublelayered. The outer scale was single-phase Ni3S2. Depending on the alloy composition and reaction conditions, the inner scale was: (1) a mixture of MoS2 plus Ni3S2 with/without Ni, (2) MoS2, or (3) MoS2 plus intermetallic particles and/or double sulfide Ni2.5Mo6S6.7. Neither internal oxidation nor internal sulfidation were observed at lower temperatures. Internal sulfidation was however observed at higher temperature when the scale apparently melted. The parabolic law was generally obeyed for the most concentrated alloys. For the two more-dilute alloys the kinetics were mostly linear. A decrease in the corrosion rate occurred with increasing Mo content of the alloy and may be attributed to the presence of increasing volume fractions of MoS2 and/or of a double Ni-Mo sulfide in the inner region of the scale. For the two most concentrated alloys this may also be due to the presence of a number of particles of the unsulfidized intermetallic compound, which is Ni3Mo for Ni-30Mo, but NiMo for Ni-40Mo.  相似文献   

8.
The sulfidation behavior of five Ni-Mo-Al ternary alloys and two Ni-Al binary alloys was studied over the temperature range 600–800°C in sulfur vapor of 10–2 atm. The effect of sulfur pressure was also investigated at and10–4 atm. using two Ni-Mo-Al alloys. The sulfidation of all Ni-Mo-Al andNi-Al alloys followed the parabolic rate law. The sulfidation rate decreasedwith increasing Al content for a given Mo content for Ni-Mo-Al alloys. Twobinary alloys, Ni-13.5Al and Ni-31Al, sulfidized at comparable rates toNi-30Mo-7.5Al, which has excellent sulfidation resistance. The activationenergies for ternary alloys range from 44.8–50.8 kcal/mol, whereas those forNi-13.5Al and Ni-31Al are 41.5 and 39.1 kcal/mol, respectively. Complexscales formed on all Ni-Mo-Al alloys, consisting of an outer layer of nickelsulfide and an inner layer of MoS2, A12S3, and Al0.55Mo2S4. Sulfide scalesformed on Ni-Al alloys were bilayered, consisting of an outer layer of nickelsulfide and an inner layer of A12S3. The low sulfidation rate of the ternaryalloys was attributed to the combined presence of both A12S3 and Al0.55Mo2S4.The sulfidation kinetics of two Ni-Mo-Al alloys are independent of sulfurpressure, suggesting that the growth of the inner layer was the dominant process.  相似文献   

9.
The sulfidation properties of Ni-Nb alloys containing additions of niobium up to 40 wt.% have been studied at atm over the temperature range 550-700 °C. The sulfidation reactions followed the parabolic rate law; the sulfidation rates decreased with increasing amounts of niobium. An Arrhenius plot of the rate constants gave activation energies of 25.0+3.5 kcal/ mole. The scales formed on Ni-Nb alloys were multilayered, generally consisting of an outer layer of nickel sulfide ( NiS1+x and Ni3S2) and an inner complex layer of NiNb3S6 plus NbS2. The position of the original metal surface was notedy platinum-wire marker experiments to be the interface between the inner andouter layers. The location of the marker indicates that the outer layer, generally greater in thickness than the inner layer, grew by outward diffusion of the nickel cations, and the inner layer formed probably by the inward diffusion of sulfur. Neither preferential sulfidation nor internal sulfidation was observed. The development of the scale structures from the transient stage to steady state was also studied.  相似文献   

10.
The sulfidation behavior of Co-Nb alloys containing up to 30wt.% Nb was studied in sulfur vapor at a pressure of 0.01 atm in the temperature range of 600–700°C. Increasing niobium content decreased the sulfidation rate, following the parabolic rate law. An activation energy of 25.6 kcal/mole was obtained for Co-10Nb, Co-20Nb, and Co-25Nb, while a value of 20.5 kcal/mole was found for Co-30Nb. All were two-phase alloys, consisting of solid solution -Co and the intermetallic compound, NbCo3. The two-phase alloys formed a rather thick outer layer of cobalt sulfides and a heterophasic inner layer that was complex. The inner layer always contained the mixed sulfide CoNb2S4 which, depending on the alloy composition, coexisted with cobalt sulfide, NbS2, and / or NbCo3 particles. Short-time sulfidations showed that the solid solution initially sulfidized rapidly to form nodules of cobalt sulfide, whereas the NbCo3 phase formed a thin protective layer of NbS2. The nodules grew laterally until they coalesced into the continuous, outer thick layer, while the NbS2 completely or partially reacted with the cobalt sulfide to form CoNb2S4. Platinum markers were always found at the interface between the inner and outer scales, the location of the original metal surface.  相似文献   

11.
The corrosion behavior of 11 Fe-Mo-Al ternary alloys was studied over the temperature range 700–980°C in H2/H2O/H2S mixed-gas environments. With the exception of Fe-10Mo-7Al, for which breakaway kinetics were observed at higher temperatures, all alloys followed the parabolic rate law, despite two-stage kinetics which were observed in some cases. A kinetics inversion was observed for alloys containing 7 wt.% Al between 700–800°C. The corrosion rates of Fe-20Mo and Fe-30Mo were found to be reduced by five orders of magnitude at all temperatures by the addition of 9.1 or higher wt.% aluminum. The scales formed on low-Al alloys (5 wt.% Al) were duplex, consisting of an outer layer of iron sulfide (with some dissolved Al) and a complex inner of Al0.55Mo2S4, FeMo2S4, Fe1.25Mo6S7.7, FeS, and uncorroded FeAl and Fe3Mo2. Platinum markers were always located at the interface between the inner and outer scales for the low-Al alloys, indicating that outer-scale growth was due mainly to outward diffusion of cations (Fe and Al), while the inner scale was formed primarily by the inward flux of sulfur anions. Alloys having intermediate Al contents (7 wt.%) formed scales that consisted of FeS and Al2O3. The amount of Al2O3 increased with increasing reaction temperature. The high-Al-content alloys (9.1 and 10 wt.%) formed only Al2O3 which was responsible for the reduction of the corrosion rates.  相似文献   

12.
The effects of zirconium and yttrium additions on the sulfidation behavior of an Fe–10Mo–20Al–8Mn(a/o, atom percent) alloy were examined in flowing H2/H2S gas of 4Pa sulfur partial pressure at 900°C. Good scale protection was obtained during the initial reaction stage of the base alloy. However, after 7–8 hr, the formation of internal (Mn,Fe) Al2S4 platelets triggered breakdown of the protective scale. The reaction products of the zirconium-containing alloy were nonprotective. Yttrium addition resulted in an Y(Fe1–xAlx)12 network along the alloy ferrite grain boundaries. Preferential sulfidation of this phase led to almost complete manganese depletion from the engulfed ferrite, and consequently avoided the manganese-promoted scale breakdown.After an even slower initial stage, this alloy sulfidized at a parabolic rate two orders of magnitude slower than that of pure iron. The protection during the initial and following stages was believed to be provided by an Al2O3-containing layer and an Al0.55Mo2S4+FexMo6S8–z layer, respectively. The formation of Al2O3 is thought to be due to oxygen impurities in the H2S gas, which cannot be removed by conventional means.  相似文献   

13.
Kai  W.  Leu  C. J.  Wu  Y. J. 《Oxidation of Metals》1998,50(1-2):89-122
The high-temperature sulfidation behavior of 310stainless steel (310SS) with Mo and Al additions (up to10 at.%) was studied over the temperature range700-900°C in pure-sulfur vapor over the range of 10-3 to 10-1 atm. Thecorrosion kinetics followed the parabolic rate law inall cases and the sulfidation rates increased withincreasing temperature and sulfur pressure. Thesulfidation rates decreased with increasing Mo and Al contents and it wasfound that the addition of 10 at.% Mo resulted in themost pronounced reduction among the alloys studied. Thescales formed on 310SS with Mo additions were complex, consisting of an outer layer of ironsulfide (with dissolved Cr), (Fe,Ni)9S8, andCr2S3/Cr3S4(with dissolved Fe), and an inner heterophasic layer ofFe1-xS,Cr2S3/Cr3S4,NiCr2S4,Fe1.25Mo6S7.7, FeMo2S4, andMoS2. The scales formed on 310SS with Mo andAl additions had a similar mixture as above, except thatAl0.55Mo2S4 was alsoobserved in the inner layer. The formation ofMoS2 andAl0.55Mo2S4 partly blocked the transport of cations throughthe inner scale, resulting in the reduction of thesulfidation rates compared to 310SS.  相似文献   

14.
The sulfidation behavior of Fe-Nb alloys containing up to 30 w/o Nb was studied over the range of 600–900°C in 0.01 aim. S2 vapor. All alloys were two-phase, consisting of an Fe-rich solid solution and Fe2Nb, and followed the parabolic rate law at all temperatures. Scales consisted of two layers-an outer layer of FeS and an inner, complex layer which contained some FeS, FeNb2S4 (possibly some FeNb3S6), NbS2, and intermetallic particles which were either completely or only partially sulfidized. Platinum markers were located always at the interface between the two layers, which corresponded to the original metal surface. Activation energies were 18±3 kcal/mol in close agreement with the 19.8 reported for pure iron. The sulfidation rate decreased markedly with increasing Nb content of the alloys. The decrease is attributed to increasing amounts of Fe2Nb with increasing Nb, the net effect being that the diffusion path for outward iron diffusion through the inner layer is reduced as the Nb content increases. An analysis of the structure of NbS2 reveals that it is easily intercalated with Fe between loosely bonded layers of S-Nb-S. The S-Nb-S layers are covalently bonded which results in very low diffusivities of either S or Nb in pure NbS2. Although intercalated Fe tends to change the Van der Waal's type bonding between layers to more ionic or covalent, Fe diffuses readily between the layers in NbS2. Intercalation of Fe also increases the concentration of sulfur defects in NbS2, which in turn increases the diffusivity of sulfur. Nb was observed to be immobile. Thus, it is thought that either outward iron diffusion or inward sulfur diffusion in the inner layer is the rate-controlling step, in spite of the close agreement of activation energies with that of the sulfidation of pure iron.  相似文献   

15.
An Fe-23Cr-5Al alloy and those containing 0.17 w/o Zr or 0.12 w/o Hf were oxidized to form -Al2O3 scales in a flow of pure O2 at 1300 K for specified periods up to 400 ks, and subsequently sulfidized at 1200 K in an H2 –10% H2S atmosphere without intermittent cooling. The protectiveness of the preformed scale was evaluated by the protection time after which a remarkable mass gain takes place owing to the rapid growth of sulfides. In general, the protection time increases as the scale thickens. Both additives increase the protection time to some degree by forming more structurally perfect scales. However, ZrO2 particles on or near the outer surface of the scale on the Zr-containing alloy provide sites for sulfide formation. The scales formed on the grain boundaries of the Hf-containing alloy are ridged. The tops of the ridges are associated with cracks, which provide preferential sites for sulfide growth.  相似文献   

16.
Ni-20Cr alloys with 2, 3.5, and 5 wt.% Al have been preoxidized up to 100 hr at 1000°C in dry H2, in H2/23% H2O and in air and subsequently exposed to an H2/5% H2S atmosphere at 750° C. During the preoxidation treatment different types of oxide scales were formed which affect the sulfidation protection in different ways. Optimum results were obtained for alloys with 3.5 and 5 wt.% Al after 20 hr exposure to dry H2 at 1000°C. A thin Al2O3 scale is formed which decreases the sulfur attack by more than one order of magnitude. Preoxidation conditions for Ni-20Cr-2Al alloys in H2 and for Ni-20Cr-2Al and Ni-20Cr-3.5Al in H2/H2O were observed to be less effective. No improvement was found for preoxidation in air or for Ni-20Cr-5Al alloys preoxidized in H2/H2O.  相似文献   

17.
High-temperature sulfidation behavior of 310 stainless steel was studied over the temperature range of 700–900°C above a pure sulfur pool with the sulfurvapor range of 10–4–10–1 atm. The corrosion kinetics followed the parabolic rate law in all cases. The corrosion rates increased with increasing temperature and sulfur pressure. The scales formed on 310 stainless steel were complex and multilayered. The outer scale consisted of iron sulfide (with dissolved Cr), (Fe, Ni)9S8 and chromium sulfides (Cr2S3 and Cr3S4 with dissolved Fe), while the inner layer was a heterophasic mixture of Cr2S3, Cr3S4, NiCr2S4, and Fe1xS. Platinum markers were found to be located at the interface between the inner and outer scales, suggesting that the outer scale grew by the outward transport of cations (Fe, Ni, and Cr), and the inner scale grew by the inward transport of sulfur. The formation of Cr2S3, Cr3S4, and NiCr2S4 partly blocked the transport of iron through the inner scale, resulting in a reduction of the corrosion rates as compared with the results in the literature.  相似文献   

18.
Mo-50Re was sulfidized over the range of 1000–1100°C in sulfur vapor at pressures of 10–4 and 10–2 atm. The reaction kinetics followed the parabolic rate law with an activation energy of 55.4 kcal/mole for and 48.2 kcal/mole for atm. The pressure dependence varied between +1/4 to +1/6 for the slope of a plot of log Kp vs log .Analysis of the diffusional processes occurring in both the scale and the alloy substrate gave an expression for the ratio of the thickness of the scale and of the -phase as a function of the corresponding rate constants for the growth of each layer. Finally, the conditions required for the formation of the -phase layer between the outer scale and the alloy substrate were obtained in terms of the ratio between the diffusion coefficients of the two metals in the intermetallic compound.  相似文献   

19.
The corrosion of Fe-Mo alloys containing up to 40 wt.% Mo was studied over the temperature range 600–980C in a H2/H2O/H2S mixture having a sulfur pressure of 10–5 atm. and an oxygen pressure of 10–20 atm. at 850C. All alloys were two-phase, consisting of an Fe-rich solid solution and an intermetallic compound, Fe3Mo2. The scales formed on Fe-Mo alloys were bilayered, consisting of an outer layer of iron sulfide (FeS) and of a complex inner layer whose composition and microstructure were a function of the reaction temperature and of the Mo content of the alloys. No oxides formed under any conditions. The corrosion kinetics followed the parabolic rate law at all temperatures. The addition of Mo caused only a slight decrease of the corrosion rate. Platinum markers were always located at the interface between the inner and outer scales, indicating that outer scale growth was primarily due to outward diffusion of iron, while the inner scale growth had a contribution from inward diffusion of sulfur.  相似文献   

20.
The sulfidation behavior of Ni-Mo alloys containing up to 40 wt.% Mo was studied at =0.01 atm. over the temperature range of 550–800°C. The alloys included two solid solutions (Ni-10Mo and Ni-20Mo), the single-phase intermetallic compound Ni4Mo(Ni-29Mo), and two alloys which were two-phase, Ni-30Mo and Ni-40Mo (Ni4Mo+Ni3Mo). The sulfidation of all alloys followed the parabolic rate law. The rate of sulfidation decreased with increasing amounts of Mo. Activation energies for sulfidation gave values of 39.1±1.0 kcal/mol. The sulfide scales were bilayered, consisting of an outer layer nickel sulfide (NiS1+x and Ni3S2) and an inner, complex layer of MoS2 plus intermetallic particles. The rate-controlling step of the sulfidation for the alloys was inward sulfur diffusion and/or outward nickel diffusion through the inner MoS2 layer. Neither selective sulfidation nor internal sulfidation were observed. No significant difference in the sulfidation kinetics, sulfide structure, and scale constitution could be noted between single-phase alloys and two-phase alloys. The location of the markers was the interface between the inner and outer layers, indicating that the inner layer formed by inward diffusion of sulfur, and the outer layer grew by outward nickel diffusion. The inability to form a continuous protective molybdenum sulfide layer is discussed in terms of the structure of MoS2 and changes caused by intercalation of Ni into the layered crystal structure. The decrease in sulfidation rate with increasing Mo was attributed to increasing amounts of the intermetallic compound. The increasing volume fraction of particles decreased the available diffusion area in the inner layer and provided a blocking effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号