首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A/O—MBR处理高氨氮废水的短程硝化研究   总被引:1,自引:0,他引:1  
采用A/O—MBR工艺处理模拟高氨氮农药生产废水,考察了系统对氨氮的去除效果。通过对pH值、温度、DO的控制实现了短程硝化,并研究了该过程的影响因素。A/O—MBR工艺在25~28℃、pH值为7.5~8.5、进水氨氮为120~1 500 mg/L、DO为2.5 mg/L时具有较为稳定的短程硝化效果,亚硝态氮的积累率平均为58.9%,对氨氮的平均去除率为93.2%。维持其他参数不变,当DO为1.5 mg/L时短程硝化效果最好,亚硝态氮的积累率在90%以上,但对氨氮的去除率降至87.5%。  相似文献   

2.
倒置A2/O工艺的短程生物脱氮中试   总被引:1,自引:0,他引:1  
在中试规模的倒置A^2/O工艺中,考察了通过控制溶解氧浓度实现短程硝化反硝化的效果。试验表明,在溶解氧为0.3~0.8mg/L的条件下,可以实现短程硝化反硝化,平均亚硝化率可达64.5%,对TN的平均去除率为66.8%,但易导致严重的污泥膨胀;在低氧(DO=0.3~0.8mg/L)与常氧(DO=1.6~2.5mg/L)模式交替运行的条件下,可以维持稳定的短程硝化反硝化.平均亚硝化率可达48.4%,对TN的平均去除率为64.3%,对TP的平均去除率可达38.5%。污泥的SVI控制在112mL/g左右。  相似文献   

3.
为了解超高污泥浓度(MLSS)对膜生物反应器(MBR)工艺运行效果的影响,分析了某采用厌氧/缺氧/好氧/缺氧(AAOA)-MBR工艺的城市污水处理厂在超高MLSS浓度下的运行情况。结果表明:MBR工艺可在较高的污泥浓度下运行,并且高污泥浓度有助于系统对有机物的去除。该污水厂的MBR膜池在20 g/L左右的超高污泥浓度下运行了超过600 d的时间,出水COD、氨氮、TN、TP浓度分别约为14、0.43、6.37和0.25 mg/L;高污泥浓度可增强系统抵御低温、进水负荷冲击的能力,并且联合后置缺氧段强化了系统的内源反硝化。MBR系统在高污泥浓度下运行,需要密切注意膜通量及跨膜压差的变化,适时进行膜清洗,以免发生膜污染。  相似文献   

4.
采用SBR工艺以水产品加工废水为研究对象,控制进水游离氨(FA)浓度为4.61 mg/L,研究高游离氨条件下短程硝化反硝化过程,对比试验结果表明:1号反应器只控制进水游离氨浓度,在运行70 d以后,转变为全程硝化,说明单一因素控制短程硝化反硝化并不稳定;2号反应器高进水游离氨条件下,控制DO为1~2 mg/L和进水pH为8.4±0.1,亚硝酸盐积累率稳定在92%以上,现已运行130 d以上,短程硝化反硝化运行稳定,表明通过非单一因素控制可实现短程硝化反硝化稳定运行.  相似文献   

5.
短程硝化/厌氧氨氧化/全程硝化工艺处理焦化废水   总被引:1,自引:0,他引:1  
通过对短程硝化和厌氧氨氧化工艺的研究,开发了短程硝化/厌氧氨氧化/全程硝化(O1/A/O2)生物脱氮新工艺并用于焦化废水的处理.控制温度为(35±1)℃、DO为2.0~3.0mg/L,第一级好氧连续流生物膜反应器在去除大部分有机污染物的同时还实现了短程硝化.考察了HRT、DO和容积负荷对反应器运行效果的影响.结果表明,当氨氮容积负荷为0.13~0.22gNH4+-N/(L·d)时,连续流反应器能实现短程硝化并有效去除氨氮.通过控制一级好氧反应器的工艺参数,为厌氧反应器实现厌氧氨氧化(ANAMMOX)创造条件.结果表明,在温度为34℃、pH值为7.5~8.5、HRT为33 h的条件下,经过115 d成功启动了厌氧氨氧化反应器.在进水氨氮、亚硝态氮浓度分别为80和90 mg/L左右、总氮负荷为160 mg/(L·d)时,对氨氮和亚硝态氮的去除率最高分别达86%和98%,对总氮的去除率为75%.最后在二级好氧反应器实现氨氮的全程硝化,进一步去除焦化废水中残留的氨氯、亚硝态氮和有机物.O1/A/O2工艺能有效去除焦化废水中的氨氮和有机物等污染物,正常运行条件下的出水氨氮<15 mg/L、亚硝态氮<1.0 mg/L,COD降至124~186 mg/L,出水水质优于A/O生物脱氮工艺的出水水质.  相似文献   

6.
采用多段AO+MBR工艺处理实际煤化工废水。将两段AO设计成OAAO形式,一段O池对BOD_5去除率为80%,有效解决了MBR回流污泥中大量溶解氧对A池的冲击与A段反硝化对碳源的需求问题。在某煤化工项目中,当进水COD为400~600 mg/L,在一级O池污泥负荷设计为0.08 kgBOD_5/(kgMLSS·d)、一级A池设计反硝化速率为0.044 kgNO_3~--N/(kgMLSS·d)、二级O池污泥负荷设计为0.08 kgBOD_5/(kgMLSS·d)、二级A池设计反硝化速率为0.029 kgNO_3~--N/(kgMLSS·d)、MBR的通量设计为12 L/(m~2·h)时,COD去除率95%,氨氮去除率99%,出水SS1.5 mg/L。  相似文献   

7.
MBR工艺处理垃圾渗滤液的设计参数探讨   总被引:2,自引:1,他引:1  
对于含有较高污染物浓度的垃圾渗滤液,采用MBR工艺处理,运行效果稳定、效率高.工程实践表明,MBR进水COD应满足硝化及反硝化的要求,生物池水温取值宜不低于25℃,生物池混合液污泥浓度宜取12~20 g/L,污泥龄宜取15~25 d,剩余污泥产率宜取0.15~0.30kgVSS/kgCOD.  相似文献   

8.
曝气生物滤池对晚期垃圾渗滤液的短程脱氮研究   总被引:2,自引:1,他引:2  
采用固定化微生物曝气生物滤池(I—BAF)对晚期垃圾渗滤液进行了短程脱氮试验研究。经过微生物固定化和硝化茵培养后,通过控制溶解氧等条件可使反应器(I—BAF1)实现稳定的亚硝化,亚硝化速率平均值是硝化速率的21.5倍,对氨氮的去除率达到90%左右,且氮主要是由同步硝化反硝化作用去除的;与全程脱氮相比,短程脱氮对总氮的去除率更高,其COD主要通过反硝化作用去除;以NaAc为外加碳源,提高C/N值为1.6~2,2时,对总氮的去除率可达60%以上,继续提高C/N值至4.5时,硝化茵因受到异养菌的抑制而活性降低,导致脱氮效果变差。当将两级I—BAF(I—BAF2充分曝气)与Fenton工艺联用时,对COD、氨氮和总氮的去除率分别为95.1%、99.1%和73.8%。  相似文献   

9.
高浓度氨氮废水的短程硝化研究   总被引:13,自引:0,他引:13  
采用6L的完全混合式反应器(CSTR)进行了高浓度氨氮废水的短程硝化研究。在温度为35℃、反应器内平均DO浓度为0.5~2.5mg/L、pH值为7~7.8的条件下连续运行141d的试验结果表明:在第26天时实现了短程硝化,从第73天开始出水中检测不出NO-3;在增加了连续污泥回流的情况下,反应器出水中也一直检测不到NO-3;在进水氨氮容积负荷达到1.2kgNH3-N/(m3·d)时,氨氮去除率仍保持在95%以上。扫描电镜的观察结果表明污泥中的细菌以短杆菌和球菌为主。  相似文献   

10.
为了实现低碳城市污水高效深度脱氮,构建短程反硝化/厌氧氨氧化+硝化颗粒污泥脱氮工艺,研究硝化颗粒污泥的培养策略。结果表明,采用上向流污泥床(USB)反应器以序批式运行,并逐步缩短沉淀时间,成功培养出了硝化颗粒污泥,其中90.52%的污泥颗粒粒径>0.5 mm;颗粒污泥的沉降速度随着粒径的增大而增大,0.5~0.9 mm粒径的颗粒污泥平均沉降速度为15.66 m/h。颗粒污泥形成后,USB反应器的氨氮容积去除速率达到1.31 g/(L·d)。短程反硝化厌氧氨氧化+硝化颗粒污泥工艺的脱氮性能分析结果表明,该工艺脱氮效率高、有机碳源需求量低,适合处理低碳城市污水并实现深度脱氮。  相似文献   

11.
全程硝化与短程硝化的特性对比研究   总被引:5,自引:0,他引:5  
为了深入了解全程硝化和短程硝化的异同,采用SBR反应器研究了全程硝化和短程硝化的脱氮除磷特点。结果表明,在曝气量一定的情况下,短程硝化的DO上升速率大于全程硝化的,而全程硝化的氨氮降解速率大于短程硝化的。全程硝化过程中亚硝态氮的浓度始终较低,而短程硝化的亚硝态氮浓度则逐渐升高且增加速率保持稳定。全程硝化和短程硝化的硝态氮浓度都是从某一时间之后以恒定的速率增长。全程硝化过程中,亚硝态氮的积累率先短期升高之后逐步下降;在短程硝化中,亚硝态氮积累率逐渐上升,在好氧吸磷结束后亚硝态氮积累率保持稳定。  相似文献   

12.
SBR中海水对短程硝化的影响   总被引:4,自引:1,他引:3  
采用SBR工艺研究了海水进入城市污水处理系统后,对氨氮去除率和短程硝化的影响.试验结果表明,在较高游离氨情况下,生活污水中海水比例为0%时,并未出现短程硝化;生活污水中海水比例为30%时可以实现短程硝化,而且氨氮的去除率并未明显降低.应用该法处理海水冲厕污水是可行的.  相似文献   

13.
短程与全程硝化反硝化过程中N_2O产量比较   总被引:2,自引:0,他引:2  
采用序批式活性污泥反应器(SBR)对生活污水短程及全程硝化反硝化过程中N2O的产生量进行了考察.结果表明,在进水氨氮浓度相同且不限制DO的条件下,全程硝化反硝化过程中N2O的总产生量为短程硝化反硝化的2倍左右;硝化类型不会影响反硝化过程对溶解性N2O的还原,无论以(NO2-)-N还是以(NO3-)-N为电子受体,反硝化过程均有利于降低N2O的浓度.  相似文献   

14.
生物沸石滤池去除微污染水源水中氨氮的挂膜启动   总被引:3,自引:0,他引:3  
胥红  邓慧萍 《供水技术》2009,3(5):10-13
对沸石滤料生物滤池处理微污染水源水中低浓度氨氮的挂膜启动性能进行了研究。试验结果表明,挂膜过程可以根据氨氮、亚硝酸盐氮、硝酸盐氮浓度的变化分为三个阶段:初期沸石发挥本身对铵离子的吸附交换性能,氨氮去除率达88%以上;中期开始出现生物硝化作用,亚硝酸盐积累明显,硝酸盐出水浓度不稳定,氨氮去除率稳定,但下降至65%左右;后期硝化反应稳定进行,亚硝酸盐迅速转化为硝酸盐,氨氮去除率稳定在60%以上。生物沸石滤池挂膜同时应考察亚硝酸盐氮、硝酸盐氮浓度变化,在出水亚硝酸氮明显积累后又稳定降低,且硝酸盐氮稳定积累时方可认为挂膜成功。进出水pH值的变化可以指示硝化反应的进行程度和生物膜形成阶段。  相似文献   

15.
在温度为30℃时,通过控制生物倍增反应器中溶解氧为0.3~0.5mg,/L、pH值为7.5~8.5,实现了连续流短程同步硝化反硝化的启动,并研究了低温和溶解氧对连续流短程同步硝化反硝化的影响.结果表明:采用阶段降温的方法,经过42天的培养,连续流短程同步硝化反硝化在10℃稳定运行;相同溶解氧下,温度在15~22℃变化时...  相似文献   

16.
为探寻适宜的微污染原水处理工艺,将蜂窝陶瓷载体置于内循环管中而构成气升式内循环蜂窝陶瓷反应器(IAL-CHS)。采用该工艺处理上海漕河泾水,考察了HRT、水温、pH值、溶解氧对去除氨氮的影响。在反应器挂膜启动后,连续运行的去除效果比间歇运行的好。HRT是影响硝化效果的重要因素,通过连续运行试验确定了最佳的HRT为1.03 h,此时对氨氮的去除率稳定在84.8%~99.2%。对氨氮的去除率与水温近似呈直线关系,温度越高则去除效果越好;河水的pH值对硝化反应影响不大;DO达到3.16 mg/L就能获得较好的处理效果,此时的曝气量为0.15 m3/h。此外,该反应器还具有抗冲击负荷能力强、不易堵塞等优点。  相似文献   

17.
在分析悬浮填料床硝化反应机理的基础上,为悬浮填料床中试装置设计、配备了自动控制系统,通过在线检测溶解氧和氨氮浓度来实现对硝化反应过程的实时控制。中试结果表明,控制系统运行稳定、反应灵活,处理出水中的氨氮浓度保持稳定,并达到了控制要求。此外,该自动控制系统还优化了曝气过程,使曝气量减少了约20%,降低了运行成本。  相似文献   

18.
Ruiz G  Jeison D  Chamy R 《Water research》2003,37(6):1371-1377
The objective of this paper was to determine the best conditions for partial nitrification with nitrite accumulation of simulated industrial wastewater with high ammonia concentration, lowering the total oxygen needed in the nitrification step, which may mean great saving in aeration. Dissolved oxygen (DO) concentration and pH were selected as operational parameters to study the possibility of nitrite accumulation not affecting overall ammonia removal. A 2.5L activated sludge reactor was operated in nitrification mode, feeding a synthetic wastewater simulating an industrial wastewater with high ammonia concentration. During the start-up a pH of 7.85 and a DO of 5.5mg/L were used. The reactor was operated until stable operation was achieved at final nitrogen loading rate (NLR) of 3.3kgN- NH(4)(+)/m(3)d with an influent ammonia concentration of 610mg N-NH(4)(+)/L.The influence of pH was studied in continuous operation in the range of 6.15-9.05, changing the reactor pH in steps until ammonia accumulation (complete nitrification inhibition) took place. The influence of DO was studied in the same mode, changing the DO in steps from 5.5 to 0.5mg/L.The pH was not a useful operational parameter in order to accumulate nitrite, because in the range of pH 6.45-8.95 complete nitrification to nitrate occurs. At pH lower than 6.45 and higher than 8.95 complete inhibition of nitrification takes place. Setting DO concentration in the reactor at 0.7mg/L, it was possible to accumulate more than 65% of the loaded ammonia nitrogen as nitrite with a 98% ammonia conversion. Below 0.5mg/L of DO ammonia was accumulated and over a DO of 1.7mg/L complete nitrification to nitrate was achieved.In conclusion, it is possible under the conditions of this study, to treat high ammonia synthetic wastewater achieving an accumulation of at least 65% of the loaded nitrogen as nitrite, operating at a DO around 0.7mg/L. This represents a reduction close to 20% in the oxygen necessary, and therefore a considerable saving in aeration.  相似文献   

19.
针对微污染原水中存在的有机物和氨氮等污染物,采用生物粉末活性炭/超滤(BPAC/UF)组合工艺进行处理。结果表明,当进水氨氮浓度较低时,硝化细菌活性较差,无法充分发挥生物降解作用,氨氮去除率较低,同时有机物去除率也较低;当进水氨氮浓度在0. 6 mg/L左右时,可以形成稳定的生物活性炭,组合工艺对氨氮的去除率较高,且对有机物的去除率较为稳定。进水中主要以分子质量<5 ku的有机物为主,组合工艺对这部分有机物的去除率也最高。组合工艺对疏水性物质的去除,主要依靠生物粉末活性炭的吸附降解和膜面滤饼层的截留作用。NaClO强化反冲洗可以很好地降低跨膜压差的增长速度,当NaClO浓度为400 mg/L、反冲洗时间为10min时可达到最佳清洗效果。  相似文献   

20.
废水生物脱氮新工艺研究进展   总被引:1,自引:0,他引:1  
朱霞  赵宗升 《山西建筑》2008,34(2):185-186
对生物脱氮新工艺进行了较全面的综述,分析了影响NO2-N积累的主要因素为游离氨、pH值、温度、溶解氧、污泥龄和有害物质,主要介绍了短程硝化反硝化、厌氧氨氧化和CANON等生物脱氮新工艺的微生物学原理,研究应用现状、发展前景以及存在的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号