首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
小波分析能将时间域上重叠但频率域上不重叠的信号进行分段,不同的频段(也就是不同的小波系数层次)代表了信号中处于该频段的信号分量,网络流量具有时域中频域重叠的特征.基于小波分解和重构思想,提出采用小波方法对于网络行为中的异常行为进行分析、判别的方法和模型,模型在模拟分析中取得较好的效果.  相似文献   

2.
杨杰  赵磊  郭文彬 《自动化学报》2021,47(9):2132-2142
针对带限图信号的重构问题, 本文提出了基于图谱域移位的带限图信号重构模型, 该模型将图带限分量的恒等不变特性建模为最小二乘问题. 基于所提出的重构模型, 本文设计了基于谱移位的重构算法和基于残差谱移位的重构算法. 相比于其他重构算法, 两种新算法提升了迭代效率和重构精度. 此外, 本文算法还适用于分段带限图信号的重构问题, 并且具有良好的迭代效率和重构精度.通过实验仿真表明, 相比于目前其他的带限图信号重构算法, 新算法的迭代效率提升约70%和重构精度提升约60%.  相似文献   

3.
针对强噪声干扰背景下微弱故障特征信息难以提取的问题,提出了一种基于奇异值分解(SVD)-形态降噪的Teager能量算子(TKEO)故障诊断方法.首先对轴承振动信号进行SVD,对得到的分量信号进行形态滤波,以滤除噪声干扰;然后利用峭度准则对分量信号进行筛选,并对其进行重构;最后利用TKEO计算重构信号的瞬时能量,得到信号的能量谱,提取振动信号的特征.将提出的方法应用于滚动轴承故障分析,结果表明该方法能清晰地提取故障特征信息.  相似文献   

4.
为了提高检测电能扰动信号特征的精度,抑制混杂噪声的干扰,提出将变分模态分解(VMD)结合小波阈值的去噪算法。首先利用Hilbert变换对扰动信号进行频谱分析,通过计算平均瞬时频率值,确定分解的模态个数;然后将含噪信号进行VMD分解,筛选部分模态分量重构信号;最后通过小波阈值法去除重构信号的残余噪声。与现有算法去噪效果对比,实验结果表明:提出的去噪算法效果良好,能够更好保留扰动期间信号的特征信息。  相似文献   

5.
张猛  苗长云  孟德军 《工矿自动化》2020,46(4):85-90,116
针对滚动轴承早期故障信号被背景噪声淹没、故障特征不明显的问题,提出一种基于小波包分解和互补集合经验模态分解(CEEMD)的轴承早期故障信号特征提取方法.利用Matlab软件对采集到的轴承振动信号进行快速谱峭度分析,根据峭度最大化原则确定带通滤波器的中心频率和带宽,设计带通滤波器;对经过带通滤波器滤波后的信号进行小波包分解和CEEMD分解,根据峭度、相关系数筛选出有效本征模态函数(IMF)分量;利用IMF分量重构小波包信号,对重构小波包信号进行包络谱分析,提取轴承早期故障信号特征频率.该方法通过谱峭度分析降低背景噪声干扰,通过小波包分解增强故障冲击信号,并将CEEMD与小波包分解相结合,解决经典EMD分解存在的模态混叠、无效分量问题.仿真结果表明,相较于传统包络解调算法,重构后信号的背景噪声得到抑制,故障特征分量突出,验证了所提方法的可行性和有效性.  相似文献   

6.
心跳与呼吸信号是人体重要的生命信息,且属于微弱信号。由于心跳和呼吸信号强度较小,在低信噪比条件下从雷达回波中提取微动特征信号存在一定困难。针对低信噪比下人体微动信号的提取,提出了一种基于互补集合经验模态分解(Complementary Ensemble Empirical Mode Decomposition,CEEMD)的信号重构方法,该方法以单频连续波雷达信号为载体,将含噪回波信号按频率特征分解为多个不同的本征模态分量(Intrinsic Mode Function,IMF),并从中选择合适的分量进行信号的重构,以此提高信号的信噪比。通过仿真实验,验证了该方法处理信号的可行性。  相似文献   

7.
基于EMD的太阳黑子时间序列组合预测模型   总被引:2,自引:0,他引:2       下载免费PDF全文
王曦  毕贵红  唐京瑞 《计算机工程》2011,37(24):176-179
针对太阳黑子的复杂性,利用经验模态分解(EMD)方法,将太阳活动在各时间尺度上的变化分量分解为平稳的固有模态函数(IMF)分量及余项。观察各分量的频谱,根据低频IMF分量和高频IMF分量的特点,分别采用自回归滑动平均模型和神经网络方法进行预测。通过各分量的预测值,重构出原始信号的预测序列。仿真结果表明,该模型具有较高的预测精度。  相似文献   

8.
许有才  万舟 《计算机应用》2015,35(9):2606-2610
针对局部均值分解(LMD)方法在分解非线性、非平稳振动信号过程中存在的模态混淆现象,从而影响故障识别准确性的问题,提出了基于条件局部均值分解方法(CLMD)与模式识别变量预测模型(VPMCD)的故障诊断方法。该方法将数字图像处理的频率分辨率方法与LMD相结合,首先确定振动信号中所有局部极值点的频率分辨率,将振动信号分为低频率分辨率区域和高频率分辨率区域;然后对高频率分辨率区域进行LMD分解,可得若干乘积函数(PF)分量;最后用折线将所有PF分量连接起来,经滑动平均处理可得PF分量,提取PF分量的偏度系数和能量系数构成故障特征向量,用于VPMCD故障识别。将该方法应用于轴承故障诊断,实验结果表明,与LMD方法相比,识别效率提高了8.33%,表明了该方法的有效性和可行性。  相似文献   

9.
在噪声干扰下有效提取振动信号所包含的微弱故障特征,是轴承故障诊断的关键问题,提出了一种基于敏感奇异值分解(SSVD)和总体平均经验模态分解(EEMD)的故障诊断方法.对时域振动信号进行敏感SVD分析,通过敏感因子选择反映故障冲击特征的敏感SVD分量,并利用定位因子定位分量信号所对应奇异值进行振动信号重构,以滤除噪声干扰;对降噪信号进行EEMD,根据峭度准则选取故障信息丰富的敏感固有模态分量(IMF),有效提取局部微弱故障信息;利用Teager-Kaiser能量算子(TKEO)计算故障信息的瞬时能量,并对其进行频谱分析,获取故障特征频率,以识别故障类型.方法应用于轴承故障诊断,实验证明了所提方法的有效性.  相似文献   

10.
由于风力发电机振动信号中掺杂大量声音信号,信号频带受到噪声干扰,致使风力发电机故障诊断效果不佳。为此,提出基于声振信号分离提纯的风力发电机在线故障诊断方法。分析导致风力发电机组声振信号干扰的因素。采用经验模态,将初始风力发电机在线故障信号分解成高频分量与低频分量两部分。采用小波阈值算法去除高频分量的噪声,并与低频分量作重构处理,得出风力发电机的实际故障振动信号。建立反向传播(BP)神经网络训练模型,使用粒子群优化算法得出该网络最佳的权值矩阵与偏置向量,并凭借网络训练算法诊断出故障数据的位置与类型。试验结果表明,所提方法在线故障诊断精度高,并能保证其训练效率与收敛速度,具有较高的实用价值。  相似文献   

11.
在对宽频段的非合作跳频信号进行无源定位场合,超高速数模转换(ADC)采样和各种定频信号的分离已经成为瓶颈。根据压缩采样理论,对于在某些表达基上为稀疏的宽频段信号,可以用远低于Nyquist门限的采样率来进行模拟信息转换(AIC),但是对于有多个定频信号存在的情况,信号重建需要的信息样点数陡然增加,这给分布式传感器系统中的AIC部分的实现带来极大的复杂度。基于子空间投影技术,提出了一种能抑制目标频带内定频干扰信号的跳频信号模拟压缩采样方法,仿真结果表明该方法是可行的。  相似文献   

12.
压缩感知(CS)是一种新的信号采样、处理和恢复理论,能够显著地降低高频窄带信号的采样频率。针对稀疏度未知信号的重建,提出了步长自适应前向后向追踪(AFBP)算法。不同于固定步长前向后向追踪(FBP)算法,AFBP的步长可变。它利用一种自适应阈值的方法选取前向步长,然后对候选支撑集进行正则化处理以保证其可靠性,接着用自适应阈值与变步长双向控制的方法选取后向步长以减少重建时间。AFBP能够自适应后向删除估计支撑集中部分错误索引以提高信号准确重建概率。在稀疏信号非零值服从常见分布条件下,用AFBP、FBP等算法进行重建的结果表明,AFBP的准确重建概率、重建精度与FBP相当,重建时间明显少于FBP,能够更高效地重建稀疏度未知信号。  相似文献   

13.
压缩感知是一种新型的信息论,打破了传统的Shannon-Nyquist采样定理,能够以少量数据完成信号采样。稀疏重构是压缩感知由理论到实际的关键环节,为了将压缩感知有效地应用于遥感成像领域,研究了稀疏重构对遥感成像过程的影响。针对稀疏重构理论模型,分析了重构误差的成因;同时,针对典型的凸优化类算法和贪婪类算法,利用峰值信噪比指标对遥感图像重构误差进行评价。在仿真实验中,定量考察遥感图像在不同压缩采样率、不同重构算法下的稀疏重构性能。结果表明,稀疏重构算法能够成功重构遥感图像,各算法在不同压缩采样率下均表现出了较好的重构质量,整体上能够满足遥感成像应用,验证了压缩感知稀疏重构方法在遥感成像中应用的可行性。  相似文献   

14.
压缩感知基本理论:回顾与展望   总被引:8,自引:4,他引:4       下载免费PDF全文
随着信息社会的迅速发展,人们对数字信息的需求越来越大。同时,人们对信号的采样速率、传输速度和存储空间的要求也变得越来越高。如何在保持信号信息的同时尽可能地减少信号的采样数量?Candès在2006年的国际数学家大会上介绍了一种称为压缩感知的新颖信号采样理论,指出:只要远少于传统Nyquist采样定理所要求的采样数即可精确或高概率精确重建原始信号。围绕压缩感知的稀疏字典设计、测量矩阵设计、重建算法设计这3个核心问题,对其基本理论和主要方法进行了系统阐述,同时指出了压缩感知有待解决的若干理论问题与关键技术。  相似文献   

15.
在传统的Shannon/Nyquist采样定理指导下,信号处理往往面临两大难题:A/D转换器技术的限制和海量采样数据的处理压力.压缩感知(CS)理论表明当信号具有稀疏性或可压缩性时,可以通过全局非自适应线性投影的方式,用远低于Shannon/Nyquist采样定理要求的频率获取信号的全部信息.以CS理论为基础的压缩成像(CI)技术在近年来得到了快速的发展.在概述CS理论的基础上,着重介绍了CI技术的原理及其发展状况,并从稀疏分解、观测矩阵的构造和重建算法3个方面对其关键问题进行了分析.CI系统可以显著节省感光器件的数量,避免了传统成像技术"先采样再压缩"方式带来的资源浪费.  相似文献   

16.
传统的基于压缩感知的图像融合算法是对整个系数进行稀疏处理,而小波分解后的低频系数不稀疏,导致压缩重构质量降低,并且传统的融合规则不易简单、全面地提取高频系数的特征值。针对这一问题,分别对小波分解得到的高、低频系数采取不同的融合规则进行处理,提出了一种改进的区域特性高频压缩感知的融合算法。其中,低频系数采用区域方差加权绝对值最大融合;高频系数首先通过具有较好RIP性质的随机观测矩阵进行压缩采样,得到的观测值基于能量匹配度的不同进行相加或加权融合,以融合不同方向的高频子带特征信息,再用正交匹配追踪重构算法对高频部分进行信号重构。最后,低频、高频信息在小波逆变换下重构出融合图像。实验结果表明,与以往的基于压缩感知的融合方法相比,此算法的融合图像更清晰,新算法无论是在主观评价还是客观评价指标上都有利于图像信号重构,并具有较好的使用性。  相似文献   

17.
姚远  梁志毅 《计算机科学》2012,39(10):50-53
传统的奈奎斯特采样定理规定采样频率最少是原信号频率的两倍,才能保证不失真的重构原始信号,而压缩感知理论指出只要信号具有稀疏性或可压缩性,就可以通过采集少量信号来精确重建原始信号.在研究和总结已有匹配算法的基础上,提出了一种新的自适应空间正交匹配追踪算法(Adaptive Space Orthogonal Matching Pursuit,ASOMP)用于稀疏信号的重建.该算法在选择原子匹配时采用逆向思路,引入正则化自适应和空间匹配的原则,加快了原子的匹配速度,提高了匹配的准确性,最终实现了原始信号的精确重建.最后与传统MP和OMP算法进行了仿真对比,结果表明该算法的重建质量和算法速度均优于传统MP和OMP算法.  相似文献   

18.
基于压缩感知信号重建的自适应正交多匹配追踪算法*   总被引:3,自引:2,他引:1  
近年来出现的压缩感知理论为信号处理的发展开辟了一条新的道路,不同于传统的奈奎斯特采样定理,它指出只要信号具有稀疏性或可压缩性,就可以通过少量随机采样点来恢复原始信号。在研究和总结传统匹配算法的基础上,提出了一种新的自适应正交多匹配追踪算法(adaptive orthogonal multi matching pursuit,AOMMP)用于稀疏信号的重建。该算法在选择原子匹配迭代时分两个阶段,引入自适应和多匹配的原则,加快了原子的匹配速度,提高了匹配的准确性,实现了原始信号的精确重建。最后与传统OMP算法  相似文献   

19.
压缩感知在雷达目标探测与识别中的研究进展   总被引:1,自引:1,他引:0  
压缩感知理论是针对采样率和计算复杂度的一种新的信号处理模式,它以远低于奈奎斯特频率对信号进行采样,并能准确重构出原始信号.随着宽带高分辨雷达技术发展,目标相对于背景的高度稀疏,与复杂的雷达系统、海量数据呈现极度的不平衡,压缩感知是有效地减弱这种不平衡的可能技术之一.以雷达稀疏信号的压缩测量及重构为主线,本文综述了压缩感知理论在雷达目标探测与识别中的研究进展,分析了压缩感知理论在PD雷达、穿墙雷达、MIMO雷达、雷达目标参数估计、雷达成像以及目标识别等领域的潜在应用,描述了国内外的相关研究进展.文中对研究中现存的难点问题进行了探讨,并展望了未来的研究方向.  相似文献   

20.
为了减少所需采集的视频数据量,基于图像绘制(Image-based rendering,IBR)的前沿方法将稠密视点信息映射成压缩感知框架中的原始信号,并将稀疏视点图像作为随机测量值,但低维测量信号由所有稠密视点信息线性组合而成,而稀疏视点图像仅仅来源于部分视点信息,导致稀疏视点采集的图像与低维测量信号不一致.本文提出...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号