首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
作为100MeV回旋加速器的主体部件,主磁铁在CYCIAE-100工程中有着举足轻重的地位。因此,主磁铁被列为串列加速器升级工程技术部的重点工作着力推进。在2007年,主要开展了设计和工程施工。  相似文献   

2.
100MeV回旋加速器中心区实验台架是用于加速负氢离子的紧凑型回旋加速器装置,它的中心平面磁场分布范围跨度较大,要求作为检测磁场分布和磁场垫补惟一手段的磁场测量应具有很高的精度、稳定性和重复性。  相似文献   

3.
本文介绍了50 MeV负氢回旋加速器(CYCIAE-50)的总体设计考虑和主磁铁系统的优化设计过程及结果。确定了CYCIAE-50主磁铁的主要尺寸参数,建模计算出满足等时性的主磁铁中心平面磁场。通过调整参数,优化了主磁铁的峰值磁场、局部饱和等,以控制建造及运行成本。优化了磁极张角与磁气隙高度等参数,使负氢离子满足轴向和径向的聚焦要求,避免穿越有害共振。最后对主磁铁的结构进行形变校核,并估计了形变对束流动力学的影响。设计结果表明,CYCIAE-50的主磁铁设计符合要求,可为后续其他系统的设计和建造提供重要参考。  相似文献   

4.
CYCIAE一100主磁铁成品重量约为416t,所用钢水量约1000t,关键部件精加工精度要求达到0.05mm,磁场垫补加工精度要求好于0.02mrn,属重型大型精密磁铁,技术要求极具挑战性。2008年是主磁铁工程取得重要进展的一年,磁极毛坯件运抵院内;盖板和磁轭浇铸成功,粗加工完成;冷加工施工设计完成,招标并签订了冷加工合同。  相似文献   

5.
为逐步研究掌握强流负氢离子源技术,“十一五”期间,将完成15-20mA强流负氢多峰离子源的技术研究设计。为此目的,在原有离子源以及参考TRIUMF离子源的基础上,重新设计了1台离子源。本文主要介绍其磁铁的布局设计。  相似文献   

6.
紧凑型的回旋加速器的磁场分布范围跨度较大,且对磁场测量的精度要求较高,磁场的测量误差直接影响到后续主磁铁的镶条垫补。磁场测量系统主要用于主磁铁中心平面上磁场分布的测量,对主磁场的测量精度及测量点相对位置精度要求极高,磁场偏离理想场的微小误差对粒子束流的运动有相当大的影响。磁场测量点的选取采用极坐标,最后给出磁场值的极坐标点分布结果。  相似文献   

7.
主磁铁是串列加速器升级工程100MeV回旋加速器的关键系统,属大型、重型、高精度设备,研制难度大,对质量控制提出了较高要求。论文对主磁铁的技术难点及关键质量影响因素进行了详细地分析、提出了质量控制的对策,对实施情况进行了介绍。  相似文献   

8.
中国原子能科学研究院建成了100 MeV紧凑型强流质子回旋加速器,其引出能量为75~100 MeV,流强为200μA。安装在回旋加速器狭小磁极气隙的中心区与螺旋静电偏转板是关键部件,其结构设计涉及磁场、高频电场、高压静电场、真空、传热等方面。本文介绍了中心区与螺旋静电偏转板的结构设计及使用情况。在设计过程中,采取加大绝缘距离、优化高频连接结构、增加杂散束流阻拦装置等措施,解决了中心区与螺旋静电偏转板在强流注入时可靠工作的问题。本文对螺旋偏转板进行了传热分析,得出了该螺旋偏转板在强流束注入时的温度分布。设计的中心区和螺旋偏转板已安装在加速器上,20μA/100 MeV的引出束流通过了12h稳定性测试,在加速器测试过程中,中心区工作稳定可靠。  相似文献   

9.
10.
由于高频谐振腔、对中线圈和束流诊断装置的安装需要,要求磁极的间隙增加约1cm,显然在中心区和加速区的磁场分布都将改变,因此,为满足加速器的束流动力学的需要,必须在改变励磁安匝数的同时,重新设计磁极的间隙、镶条、芯柱等磁铁参数。在2005年,除了设计确定磁铁的几何参数、磁场分布外,许多工程方面的工作得到了推进,其中包括机械结构设计和建造的前期准备工作。  相似文献   

11.
阐述了一种回旋加速器主磁铁的CAE方法,基于该方法在VAX—11/780上所形成的CAE系统,具有可移植性好的特点,目前已成功地移植到PC—386微机上。智能化的CAD工作,在专家经验知识库的帮助下,使一般的设计者,也能得到高水平的磁铁结构;磁场分析基于多次考验过的磁场数值计算程序,束流动力计算经过实际考验;CAM工作是根据现有数控车床的具体要求,将设计结果转换成必要的加工数控数据,并能根据实际测磁结果,以形成等时性磁场为目标,计算出叶片修改量并输出数控数据,指导整个磁铁加工过程。应用该CAE系统设计的回旋加速器主磁铁,结构与目前国际上回旋加速器的结构十分接近,运行功耗有所下降。  相似文献   

12.
利用多粒子跟踪程序COMA,来模拟CYCIAE-100的剥离引出过程,并验证由引出剥离程序所定出的剥离点,同时分析研究经剥离膜剥离后的束流参数。  相似文献   

13.
加速器引出束流分布一般都是高斯分布,而在很多束流应用中都需要均匀分布的束流,为此目的设计了旋转扫描磁铁。旋转扫描磁铁形成一垂直于束流传输轴向均匀旋转磁场,在该磁场作用下,通过旋转扫描磁铁的束流也会随磁场的旋转而旋转,从而提高束流的均匀度。其旋转过程如图1所示。  相似文献   

14.
100MeV强流回旋加速器及束流管道系统(CYCIAE-100)工程计划建设1台能量为75-100MeV、质子束流强度200μA的回旋加速器,7条质子束流管道和2条中子束流管道。2006年,重点完成了初步设计,并开展施工设计工作;开始工程重大设备的制造工作;基本完成了研究试验项目。  相似文献   

15.
CYCIAE-100MeV回旋加速器非标机械结构主要包括离子源、轴向注入、中心区、高频腔体、频率自动微调、高频功率馈入、剥离靶引出、磁场调谐系统、对中线圈、径向束流探针、真空系统、相位探测系统、磁场测量系统、主线圈、束流诊断系统、束流调试靶、质子管道及传输元件、举升系统、运输安装与调节系统等。  相似文献   

16.
利用多粒子跟踪程序COMA来模拟CYCIAE-100的加速过程。在束流强度和初始发射度固定的情况下,分析研究加速过程中束团的能散、滑相、相图的变化,发射度的变化,以及束流包络的变化情况。  相似文献   

17.
本工作研究计算中国原子能科学研究院目前正在设计、建造中的100MeV强流质子回旋加速器CYCIAE-100主磁铁电磁力。计算中选用虚位移法和麦克斯韦应力张量法两种方法。在利用电磁场三维有限元分析程序计算得到紧凑型等时性回旋加速器主磁铁电磁场的基础上,先采用虚位移法估算电磁吸力,然后基于麦克斯韦应力张量法在MATLAB环境下编写数值计算程序,详细研究磁极和磁轭受到的电磁吸力。两种方法的计算结果接近。计算得到的主磁铁磁极间吸力大于磁极与盖板间吸力,二者之差由磁极和盖板间的螺栓承担。电磁力的计算结果为主磁铁结构变形计算和结构方案选取提供了依据。  相似文献   

18.
100 MeV紧凑型回旋加速器主磁铁的几何结构十分复杂,但为了形成加速器束流动力学所要求的磁场分布,本文对初步设计的磁铁进行必要的简化。综合采用各种适当的三维有限元网格剖分技术,对该磁铁的磁场进行数值分析,计算精度满足加速器物理设计的要求。  相似文献   

19.
在CYCIAE-100回旋加速器的整体设计中,满足各种束流动力学要求的磁场分布的实现是最为关键的环节之一。在紧凑型回旋加速器中,磁铁的形变将严重影响中心平面及其附近的磁场分布。导致磁铁变形的主要因素有磁铁自身的重力、电磁力和外界的大气压力。其中对于重力和电磁力引起的磁铁形变,如果变形足够小,可留待磁场测量和垫补阶段处理;如果变形较大,则需在设计阶段对气隙的结构尺寸加以补偿。而对于大气压力引起的磁铁变形,由于磁场测量是在非真空条件下进行,因此需详细分析这样的变形对磁场的影响,为大气下测磁数据的真空校正处理提供依据。总之,主磁铁的结构力学研究对于CYCIAE-100最终磁场达到高的精度有重要意义。  相似文献   

20.
中国原子能科学研究院建成了一台强流质子回旋加速器,其引出能量为100 MeV,流强为200 μA。为减小粒子加速时束流损失的目的,其粒子加速腔内工作真空度要求为6.7×10-6 Pa。由于是紧凑型加速器结构,该加速器能提供给真空系统利用的通路有限,为此主真空系统设计为内置式低温冷板结合商业低温泵的排气方案以增加系统整体的抽气能力。设计、加工完成的真空系统已成功应用于100 MeV强流质子回旋加速器上,为加速器的束流调试和正常供束提供了有利的保障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号