首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In Saccharomyces cerevisiae the metabolic degradation of saturated fatty acids is exclusively confined to peroxisomes. In addition to a functional beta-oxidation system, the degradation of unsaturated fatty acids requires auxiliary enzymes, including a Delta2, Delta3-enoyl-CoA isomerase and an NADPH-dependent 2,4-dienoyl-CoA reductase. We found both enzymes to be present in yeast peroxisomes. The impermeability of the peroxisomal membrane for pyrimidine nucleotides led to the question of how the NADPH needed by the reductase is regenerated in the peroxisomal lumen. We report the identification and functional analysis of the IDP3 gene product, which is a yeast peroxisomal NADP-dependent isocitrate dehydrogenase. The newly identified peroxisomal protein is homologous to the mitochondrial Idp1p and cytosolic Idp2p, which both are yeast NADP-dependent isocitrate dehydrogenases. Yeast cells lacking Idp3p grow normally on saturated fatty acids, but growth is impaired on unsaturated fatty acids, indicating that the peroxisomal Idp3p is involved in their metabolic utilization. The data presented are consistent with the assumption that peroxisomes of S. cerevisiae contain the enzyme equipment needed for the degradation of unsaturated fatty acids, including an NADP-dependent isocitrate dehydrogenase, a putative constituent of a peroxisomal NADPH-regenerating redox system.  相似文献   

2.
3.
BACKGROUND: The degradation of unsaturated fatty acids is vital to all living organisms. Certain unsaturated fatty acids must be catabolized via a pathway auxiliary to the main beta-oxidation pathway. Dienoyl-coenzyme A (dienoyl-CoA) isomerase catalyzes one step of this auxiliary pathway, the isomerization of 3-trans,5-cis-dienoyl-CoA to 2-trans,4-trans-dienoyl-CoA, and is imported into both mitochondria and peroxisomes. Dienoyl-CoA isomerase belongs to a family of CoA-binding proteins that share the enoyl-CoA hydratase/isomerase sequence motif. RESULTS: The crystal structure of rat dienoyl-CoA isomerase has been determined at 1.5 A resolution. The fold closely resembles that of enoyl-CoA hydratase and 4-chlorobenzoyl-CoA dehalogenase. Dienoyl-CoA isomerase forms hexamers made up of two trimers. The structure contains a well ordered peroxisomal targeting signal type-1 which is mostly buried in the inter-trimer space. The active-site pocket is deeply buried and entirely hydrophobic, with the exception of the acidic residues Asp176, Glu196 and Asp204. Site-directed mutagenesis of Asp204 revealed that this residue is essential for catalysis. In a molecular modeling simulation, a molecule of 3-trans,5-cis-octadienoyl-CoA was docked into the active site. CONCLUSIONS: The structural data, supported by the mutagenesis data, suggest a reaction mechanism where Glu196 acts as a proton acceptor and Asp204 acts as a proton donor. Asp176 is paired with Glu196 and is important for optimizing the catalytic proton transfer properties of Glu196. In the predicted mode of substrate binding, an oxyanion hole stabilizes the transition state by binding the thioester oxygen. The presence of a buried peroxisomal targeting signal suggests that dienoyl-CoA isomerase is prevented from reaching its hexameric structure in the cytosol.  相似文献   

4.
Peroxisomes have been shown to play an important role in the oxidative degradation of (poly)unsaturated fatty acids, and contain the enzyme activities needed for the metabolism of double bonds of unsaturated fatty acids in connection with this physiological function. Our understanding of the metabolic pathways and enzyme activities involved in the degradation of unsaturated acyl-CoAs has undergone a re-evaluation recently, and though many open questions still remain significant progress has been made, especially concerning the reactions metabolizing double bonds. The enzyme activities to be discussed here are 2,4-dienoyl-CoA reductase; 3/2-enoyl-CoA isomerase; 2-enoyl-CoA hydratase 2; 5-enoyl-CoA reductase and 3,5/2,4-dienoyl-CoA isomerase. Some of these activities are integral parts of the multifunctional proteins of beta-oxidation systems, which must also be taken into account in this context.  相似文献   

5.
SR31747 is a novel agent that elicits immunosuppressive and anti-inflammatory effects. This drug was shown to inhibit Delta8-Delta7 sterol isomerase in yeast. To test whether this enzyme could also be an SR31747 target in mammals, the binding, antiproliferative and sterol biosynthesis inhibitory properties of various drugs were studied in recombinant sterol isomerase-producing yeast cells. Our results clearly show that SR31747 is a high affinity ligand of recombinant mammalian sterol isomerase (Kd = 1 nM). Tridemorph, a sterol biosynthesis inhibitor that is widely used in agriculture as an antifungal agent, is also a powerful inhibitor of murine and human sterol isomerases (IC50 value in the nanomolar range). Some drugs, like cis-flupentixol, trifluoperazine, 7-ketocholestanol and tamoxifen, inhibit SR31747 binding only with the mammalian enzymes, whereas other drugs, like haloperidol and fenpropimorph, are much more effective with the yeast enzyme than with the mammalian ones. Emopamil, a high affinity ligand of human sterol isomerase, is inefficient in inhibiting SR31747 binding to its mammalian target, suggesting that the SR31747 and emopamil binding sites on mammalian sterol isomerase do not overlap. In contrast, SR31747 binding inhibition by tamoxifen is very efficient and competitive (IC50 value in the nanomolar range), indicating that mammalian sterol isomerase contains a so-called antiestrogen binding site. Tamoxifen is found to selectively inhibit sterol biosynthesis at the sterol isomerase step in the cells that are producing the mammalian enzyme in place of their own sterol isomerase. Finally, we also show that tridemorph, a sterol biosynthesis inhibitor widely used in agriculture as an antifungal agent, is not selective of yeast Delta8-Delta7 sterol isomerase but is also highly efficient against murine Delta8-Delta7 sterol isomerase or human Delta8-Delta7 sterol isomerase. This observation contrasts with our already published results showing that fenpropimorph, another sterol isomerase inhibitor used in agriculture, is only poorly efficient against the mammalian enzymes.  相似文献   

6.
7.
Infection of Nicotiana benthamiana cells with cymbidium ringspot (CymRSV) and carnation Italian ringspot (CIRV) viruses results in the formation of conspicuous membranous bodies [multivesicular bodies (MVBs)], which develop from modified peroxisomes or mitochondria, respectively. The organelle targeting signal is located in the proteins of 33 kDa (CymRSV) or 36 kDa (CIRV) encoded by ORF 1, which contain an N-terminal hydrophilic portion followed by two predicted hydrophobic transmembrane segments. Biochemical analysis showed that the 33- and 36-kDa proteins are integral membrane proteins. By exchanging small portions of the ORF 1 sequence between the infectious full-length clones of the two viruses, hybrid constructs were obtained of which the in vitro synthesized RNA was inoculated to N. benthamiana plants and protoplasts. The structure of infectious clones suggested that both the N-terminal hydrophilic region and the transmembrane segments of the ORF 1-encoded proteins specify which organelle is involved in the synthesis of MVBs. Mutational analysis of the CIRV 36-kDa protein also suggested the presence of an internal mitochondrial targeting sequence similar to that found in several normal host proteins that are synthesized in the cytoplasm and transported to mitochondria. The CymRSV 33-kDa protein did not contain the obvious consensus signals thought to be characteristic of proteins targeted to peroxisomes, and an mitochondrial targeting sequence motif was not evident.  相似文献   

8.
Human medium-chain enoyl-CoA hydratase was purified from liver, because we noticed the presence of a high medium-chain enoyl-CoA hydratase activity in human skin fibroblasts catalyzed by an enzyme different from the known enzymes catalyzing the enoyl-CoA hydratase reaction. Two enzyme preparations were obtained. One of them, preparation I, consisted of 46-kDa polypeptide, and its molecular mass was estimated to be 86 kDa. The other, preparation II, consisted of a major 77-kDa polypeptide and minor smaller polypeptides including 46-kDa polypeptide. The molecular mass of preparation II was 154 kDa. Both enzyme preparations catalyzed reversible dehydration of medium-chain D-3-hydroxyacyl-CoA to 2-trans-enoyl-CoA, but did not react with L-3-hydroxyacyl-CoA. Catalytic properties and immunochemical reactivities of these enzyme preparations were nearly the same. The cross-reactive material to the antibody was confirmed to be in peroxisomes by immunohistochemical study of cultured human skin fibroblasts.  相似文献   

9.
The proapoptotic protein BAX contains a single predicted transmembrane domain at its COOH terminus. In unstimulated cells, BAX is located in the cytosol and in peripheral association with intracellular membranes including mitochondria, but inserts into mitochondrial membranes after a death signal. This failure to insert into mitochondrial membrane in the absence of a death signal correlates with repression of the transmembrane signal-anchor function of BAX by the NH2-terminal domain. Targeting can be instated by deleting the domain or by replacing the BAX transmembrane segment with that of BCL-2. In stimulated cells, the contribution of the NH2 terminus of BAX correlates with further exposure of this domain after membrane insertion of the protein. The peptidyl caspase inhibitor zVAD-fmk partly blocks the stimulated mitochondrial membrane insertion of BAX in vivo, which is consistent with the ability of apoptotic cell extracts to support mitochondrial targeting of BAX in vitro, dependent on activation of caspase(s). Taken together, our results suggest that regulated targeting of BAX to mitochondria in response to a death signal is mediated by discrete domains within the BAX polypeptide. The contribution of one or more caspases may reflect an initiation and/or amplification of this regulated targeting.  相似文献   

10.
A polyclonal antiserum raised against the purified glycosomal glycerol-3-phosphate dehydrogenase of Trypanosoma brucei brucei has been used to identify the corresponding cDNA clone in a T.b. brucei expression library. This cDNA was subsequently used to obtain genomic clones containing glycerol-3-phosphate dehydrogenase genes. Two tandemly arranged genes were detected in these clones. Characterization of one of the genes showed that it codes for a polypeptide of 353 amino acids, with a molecular mass of 37,651 Da and a calculated net charge of +8. Using the T.b. brucei gene as a probe, a corresponding glycerol-3-phosphate dehydrogenase gene was also identified in a genomic library of Leishmania mexicana mexicana. The L.m. mexicana gene codes for a polypeptide of 365 amino acids, with a molecular mass of 39,140 Da and a calculated net charge of +8. The amino-acid sequences of both polypeptides are 63% identical and carry a type-1 peroxisomal targeting signal (PTS1) SKM and -SKL at their respective C-termini. Moreover, the L.m. mexicana polypeptide also carries a short N-terminal extension reminiscent of a mitochondrial transit sequence. Subcellular localisation analysis showed that in L.m. mexicana the glycerol-3-phosphate dehydrogenase activity co-fractionated both with mitochondria and with glycosomes. This is not the case in T. brucei, where the enzyme is predominantly glycosomal. The two trypanosomatid sequences resemble their prokaryotic homologues (32-36%) more than their eukaryotic counterparts (25-31%) and carry typical prokaryotic signatures. The possible reason for this prokaryotic nature of a trypanosomatid glycerol-3-phosphate dehydrogenase is discussed.  相似文献   

11.
Yeast deficient in the cytosolic copper/zinc superoxide dismutase (SOD1) exhibit metabolic defects indicative of oxidative damage even under non-stress conditions. To help identify the endogenous sources of this oxidative damage, we isolated mutant strains of S. cerevisiae that suppressed metabolic defects associated with loss of SOD1. Six complementation groups were isolated and three of the corresponding genes have been identified. One sod1Delta suppressor represents SSQ1 which encodes a hsp70-type molecular chaperone found in the mitochondria. A second sod1Delta suppressor gene, designated JAC1, represents a new member of the 20-kDa J-protein family of co-chaperones. Jac1p contains a mitochondrial targeting consensus sequence and may serve as the partner for Ssq1p. Homologues of Ssq1p and Jac1p are found in bacteria in close association with genes proposed to be involved in iron-sulfur protein biosynthesis. The third suppressor gene identified was NFS1. Nfs1p is homologous to cysteine desulfurase enzymes that function in iron-sulfur cluster assembly and is also predicted to be mitochondrial. Each of the suppressor mutants identified exhibited diminished rates of respiratory oxygen consumption and was found to have reduced mitochondrial aconitase and succinate dehydrogenase activities. Taken together these results suggest a role for Ssq1p, Jac1p, and Nfs1p in assembly/maturation of mitochondrial iron-sulfur proteins and that one or more of the target Fe/S proteins contribute to oxidative damage in cells lacking copper/zinc SOD.  相似文献   

12.
Cytochrome P4501A1 is a hepatic, microsomal membrane-bound enzyme that is highly induced by various xenobiotic agents. Two NH2-terminal truncated forms of this P450, termed P450MT2a and MT2b, are also found localized in mitochondria from beta-naphthoflavone-induced livers. In this paper, we demonstrate that P4501A1 has a chimeric NH2-terminal signal that facilitates the targeting of the protein to both the ER and mitochondria. The NH2-terminal 30-amino acid stretch of P4501A1 is thought to provide signals for ER membrane insertion and also stop transfer. The present study provides evidence that a sequence motif immediately COOH-terminal (residues 33-44) to the transmembrane domain functions as a mitochondrial targeting signal under both in vivo and in vitro conditions, and that the positively charged residues at positions 34 and 39 are critical for mitochondrial targeting. Results suggest that 25% of P4501A1 nascent chains, which escape ER membrane insertion, are processed by a liver cytosolic endoprotease. We postulate that the NH2-terminal proteolytic cleavage activates a cryptic mitochondrial targeting signal. Immunofluorescence microscopy showed that a portion of transiently expressed P4501A1 is colocalized with the mitochondrial-specific marker protein cytochrome oxidase subunit I. The mitochondrial-associated MT2a and MT2b are localized within the inner membrane compartment, as tested by resistance to limited proteolysis in both intact mitochondria and mitoplasts. Our results therefore describe a novel mechanism whereby proteins with chimeric signal sequence are targeted to the ER as well as to the mitochondria.  相似文献   

13.
Mitochondrial NADH-cytochrome b5 reductase (Mcr1p) is encoded by a single nuclear gene and imported into two different submitochondrial compartments: the outer membrane and the intermembrane space. We now show that the amino-terminal 47 amino acids suffice to target the Mcr1 protein to both destinations. The first 12 residues of this sequence function as a weak matrix-targeting signal; the remaining residues are mostly hydrophobic and serve as an intramitochondrial sorting signal for the outer membrane and the intermembrane space. A double point mutation within the hydrophobic region of the targeting sequence virtually abolishes the ability of the precursor to be inserted into the outer membrane but increases the efficiency of transport into the intermembrane space. Import of Mcr1p into the intermembrane space requires an electrochemical potential across the inner membrane, as well as ATP in the matrix, and is strongly impaired in mitochondria lacking Tom7p or Tim11p, two components of the translocation machineries in the outer and inner mitochondrial membranes, respectively. These results indicate that intramitochondrial sorting of the Mcr1 protein is mediated by specific interactions between the bipartite targeting sequence and components of both mitochondrial translocation systems.  相似文献   

14.
Mitochondrial precursor proteins made in the cytosol bind to a hetero-oligomeric protein import receptor on the mitochondrial surface and then pass through the translocation channel across the outer membrane. This translocation step is accelerated by an acidic domain of the receptor subunit Mas22p, which protrudes into the intermembrane space. This 'trans' domain of Mas22p specifically binds functional mitochondrial targeting peptides with a Kd of < 1 microM and is required to anchor the N-terminal targeting sequence of a translocation-arrested precursor in the intermembrane space. If this Mas22p domain is deleted, respiration-driven growth of the cells is compromised and import of different precursors into isolated mitochondria is inhibited 3- to 8-fold. Binding of precursors to the mitochondrial surface appears to be mediated by cytosolically exposed acidic domains of the receptor subunits Mas20p and Mas22p. Translocation of a precursor across the outer membrane thus appears to involve sequential binding of the precursor's basic and amphiphilic targeting signal to acidic receptor domains on both sides of the membrane.  相似文献   

15.
The possibility of specifically addressing recombinant probes to mitochondria is a novel, powerful way to study these organelles within living cells. We first showed that the Ca(2+)-sensitive photoprotein aequorin, modified by the addition of a mitochondrial targeting sequence, allows to monitor specifically the Ca2+ concentration in the mitochondrial matrix ([Ca2+]m) of living cells. With this tool, we could show that, upon physiological stimulation, mitochondria undergo a major rise in [Ca2+]m, well in the range of the Ca2+ sensitivity of the matrix dehydrogenases, in a wide variety of cell types, ranging from non excitable, e.g., HeLa and CHO, and excitable, e.g., cell lines to primary cultures of various embryological origin, such as myocytes and neurons. This phenomenon, while providing an obvious mechanism for tuning mitochondrial activity to cell needs, appeared at first in striking contrast with the low affinity of mitochondrial Ca2+ uptake mechanisms. Based on indirect evidence, we proposed that the mitochondria might be close to the source of the Ca2+ signal and thus exposed to microdomains of high [Ca2+], hence allowing the rapid accumulation of Ca2+ into the organelle. In order to verify this intriguing possibility, we followed two approaches. In the first, we constructed a novel aequorin chimera, targeted to the mitochondrial intermembrane space (MIMS), i.e., the region sensed by the low-affinity Ca2+ uptake systems of the inner mitochondrial membrane. With this probe, we observed that, upon agonist stimulation, a portion of the MIMS is exposed to saturating Ca2+ concentrations, thus confirming the occurrence of microdomains of high [Ca2+] next to mitochondria. In the second approach, we directly investigated the spatial relationship of the mitochondria and the ER, the source of agonist-releasable Ca2+ in non-excitable cells. For this purpose, we constructed GFP-based probes of organelle structure; namely, by targeting to these organelles GFP mutants with different spectral properties, we could label them simultaneously in living cells. By using an imaging system endowed with high speed and sensitivity, which allows to obtain high-resolution 3D images, we could demonstrate that close contacts (< 80 nm) occur in vivo between mitochondria and the ER.  相似文献   

16.
Using a new screening procedure for the isolation of peroxisomal import mutants in Pichia pastoris, we have isolated a mutant (pex7) that is specifically disturbed in the peroxisomal import of proteins containing a peroxisomal targeting signal type II (PTS2). Like its Saccharomyces cerevisiae homologue, PpPex7p interacted with the PTS2 in the two-hybrid system, suggesting that Pex7p functions as a receptor. The pex7Delta mutant was not impaired for growth on methanol, indicating that there are no PTS2-containing enzymes involved in peroxisomal methanol metabolism. In contrast, pex7Delta cells failed to grow on oleate, but growth on oleate could be partially restored by expressing thiolase (a PTS2-containing enzyme) fused to the PTS1. Because the subcellular location and mechanism of action of this protein are controversial, we used various methods to demonstrate that Pex7p is both cytosolic and intraperoxisomal. This suggests that Pex7p functions as a mobile receptor, shuttling PTS2-containing proteins from the cytosol to the peroxisomes. In addition, we used PpPex7p as a model protein to understand the effect of the Pex7p mutations found in human patients with rhizomelic chondrodysplasia punctata. The corresponding PpPex7p mutant proteins were stably expressed in P. pastoris, but they failed to complement the pex7Delta mutant and were impaired in binding to the PTS2 sequence.  相似文献   

17.
The Tim23 protein is an essential inner membrane (IM) component of the yeast mitochondrial protein import pathway. Tim23p does not carry an amino-terminal presequence; therefore, the targeting information resides within the mature protein. Tim23p is anchored in the IM via four transmembrane segments and has two positively charged loops facing the matrix. To identify the import signal for Tim23p, we have constructed several altered versions of the Tim23 protein and examined their function and import in yeast cells, as well as their import into isolated mitochondria. We replaced the positively charged amino acids in one or both loops with alanine residues and found that the positive charges are not required for import into mitochondria, but at least one positively charged loop is required for insertion into the IM. Furthermore, we find that the signal to target Tim23p to mitochondria is carried in at least two of the hydrophobic transmembrane segments. Our results suggest that Tim23p contains separate import signals: hydrophobic segments for targeting Tim23p to mitochondria, and positively charged loops for insertion into the IM. We therefore propose that Tim23p is imported into mitochondria in at least two distinct steps.  相似文献   

18.
The human emopamil binding protein (hEBP) exhibits sterol Delta8-Delta7 isomerase activity (EC 5.3.3.5) upon heterologous expression in a sterol Delta8-Delta7 isomerization-deficient erg2-3 yeast strain. Ala scanning mutagenesis was used to identify residues in the four putative transmembrane alpha-helices of hEBP that are required for catalytic activity. Isomerization was assayed in vivo by spectrophotometric quantification of Delta5,7-sterols. Out of 64 Ala mutants of hEBP only H77A-, E81A-, E123A-, T126A-, N194A-, and W197A-expressing yeast strains contained 10% or less of wild-type (wt) Delta5,7-sterols. All substitutions of these six residues with functionally or structurally similar amino acid residues failed to fully restore catalytic activity. Mutants E81D, T126S, N194Q, and W197F, but not H77N and E123D, still bound the enzyme inhibitor 3H-ifenprodil. Changed equilibrium and kinetic binding properties of the mutant enzymes confirmed our previous suggestion that residues required for catalytic activity are also involved in inhibitor binding [Moebius et al. (1996) Biochemistry 35, 16871-16878]. His77, Glu81, Glu123, Thr126, Asn194, and Trp197 are localized in the cytoplasmic halves of the transmembrane segments 2-4 and are proposed to line the catalytic cleft. Ala mutants of Trp102, Tyr105, Asp109, Arg111, and Tyr112 in a conserved cytoplasmic domain (WKEYXKGDSRY) between transmembrane segments 2 and 3 contained less than 10% of wt Delta5,7-sterols, implying that this region also could be functionally important. The in vivo complementation of enzyme-deficient yeast strains with mutated cDNAs is a simple and sensitive method to rapidly analyze the functional consequences of mutations in sterol modifying enzymes.  相似文献   

19.
To compare roles of specific enzymes in supply of NADPH for cellular biosynthesis, collections of yeast mutants were constructed by gene disruptions and matings. These mutants include haploid strains containing all possible combinations of deletions in yeast genes encoding three differentially compartmentalized isozymes of NADP+-specific isocitrate dehydrogenase and in the gene encoding glucose-6-phosphate dehydrogenase (Zwf1p). Growth phenotype analyses of the mutants indicate that either cytosolic NADP+-specific isocitrate dehydrogenase (Idp2p) or the hexose monophosphate shunt is essential for growth with fatty acids as carbon sources and for sporulation of diploid strains, a condition associated with high levels of fatty acid synthesis. No new biosynthetic roles were identified for mitochondrial (Idp1p) or peroxisomal (Idp3p) NADP+-specific isocitrate dehydrogenase isozymes. These and other results suggest that several major presumed sources of biosynthetic reducing equivalents are non-essential in yeast cells grown under many cultivation conditions. To develop an in vivo system for analysis of metabolic function, mammalian mitochondrial and cytosolic isozymes of NADP+-specific isocitrate dehydrogenase were expressed in yeast using promoters from the cognate yeast genes. The mammalian mitochondrial isozyme was found to be imported efficiently into yeast mitochondria when fused to the Idp1p targeting sequence and to substitute functionally for Idp1p for production of alpha-ketoglutarate. The mammalian cytosolic isozyme was found to partition between cytosolic and organellar compartments and to replace functionally Idp2p for production of alpha-ketoglutarate or for growth on fatty acids in a mutant lacking Zwf1p. The mammalian cytosolic isozyme also functionally substitutes for Idp3p allowing growth on petroselinic acid as a carbon source, suggesting partial localization to peroxisomes and provision of NADPH for beta-oxidation of that fatty acid.  相似文献   

20.
In this paper we describe isolation and molecular characterization of human dihydroxyacetonephosphate acyltransferase (DAP-AT). The enzyme was extracted from rabbit Harderian gland peroxisomes and isolated as a trimeric complex by sucrose density gradient centrifugation. From peptide sequences matching EST-clones were obtained which allowed cloning and sequencing of the cDNA from a human cDNA library. The nucleotide-derived amino acid sequence revealed a protein consisting of 680 amino acid residues of molecular mass 77187 containing a C-terminal type 1 peroxisomal targeting signal. Monospecific antibodies raised against this polypeptide efficiently immunoprecipitated DAP-AT activity from solubilized peroxisomal preparations, thus demonstrating that the cloned cDNA codes for DAP-AT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号