首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although immobilization of antigen-specific immunoglobulins onto matrix-assisted laser desorption/ionization (MALDI) targets allows the specific detection and enrichment of an antigen from complex biological fluids, the process of antibody immobilization is not optimal. The principal reason is that the antibody can bind to the template in various orientations, many of which block antigen recognition. An affinity capture MALDI mass spectrometry methodology was developed by covalently immobilizing an Fc receptor (recombinant protein G) onto MALDI gold targets for the purpose of orientating an immunoglobulin G, with the Fab domains pointing away from the target surface. The pregnancy and cancer marker, human chorionic gonadotropin beta core fragment (hCGbetacf), was our chosen test substance. To optimize the methodology, different surface densities of protein G and immunoglobulin were achieved by employing varying concentrations for immobilization. Captured amounts of hCGbetacf were compared using an external standard (cytochrome c). Orientation of immunoglobulin resulted in an approximately 3-fold increase in MALDI signal compared to using randomly immobilized antibody. Higher antibody concentrations resulted in diminished MALDI signals, which were explained by steric hindrance. Purification and enrichment of hCGbetacf was achieved from a test solution containing contaminant peptides and proteins using oriented immunoglobulins on-target.  相似文献   

3.
The acid-base protonation constants of two recently introduced chelating ligands for protein purification, O-phosphoserine and 8-hydroxyquinoline immobilized onto Sepharose CL-4B, and the stability constants of their derived immobilized metal ion chelate complexes have been determined by potentiometric methods. The data confirm that immobilization thermodynamically constrains the ligands, with the electron-withdrawing characteristics of the group linking the ligand to the support material affecting the magnitude of the stability constant of the immobilized metal ion complex vis-à-vis the free ligand-metal ion complex in solution. The influence of buffer composition, ionic strength, and pH on the stability constant of the immobilized hard metal ion chelate complexes has also been examined. Collectively, the results have confirmed that coordination complexes with stoichiometries other than the simply 1:1 ML-type exist with these systems, with hard metal ions exhibiting a preference for hydrolytic M(OH)(m)L(n) complexes where m or n > 1. These findings on the participation of coordination complexes of different stoichiometry depending on the characteristics of the chelating ligand and metal ion have fundamental implications for the interpretation of immobilized metal ion affinity chromatographic separation of proteins.  相似文献   

4.
Cell affinity is one of the important issues required for developing tissue engineering materials. Although the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) has been attractive for its controllable mechanical properties recent years, its cell affinity is still necessary to be improved for the requirements. For this purpose, the regenerated silk fibroin (SF) was coated on the PHBHHx films and its porous scaffolds. The mechanical test showed that SF-modified PHBHHx (SF/PHBHHx) film has a maximum tensile strength of 11.5 ± 0.5 MPa and elongation at break of 175 ± 5%. ATR-FTIR spectroscopy demonstrated that SF firmly attached on the scaffold by the hydrogen bonding interaction between SF and PHBHHx even flushed for 21 days in the phosphate-buffer saline (PBS) solution (pH = 7.4). In order to characterize the cell affinity of the SF-modified material, endothelial-like cell line ECV304 cells were seeded on the SF/PHBHHx films and its porous scaffolds. The histochemical analyses of cells stained by the hematoxylin and eosin (HE) as well as cell nuclei stained by the 4′,6-diamindine-2′-phenylindole (DAPI) demonstrated that cell attached and reached nearly 100% confluence on the SF/PHBHHx films when cultured for 4 days, which was much faster than that on the pure PHBHHx film. Moreover, the assay of cell activity by the 3-(4, 5-dimethyl thiazol -2-yl)-2, 5-diphenyl terazolium bromide (MTT) showed quantitatively that the number of cells on the SF/PHBHHx porous scaffolds was significant more than that on the unmodified ones after 4, 8, and 14 days culture, respectively. Scanning electron microscopy (SEM) revealed the similar results. Therefore, the SF-modified PHBHHx material is maybe a potential material applicable in the cardiovascular tissue engineering.  相似文献   

5.
Novel nanospheres with an average size of 350 nm utilizing N-methacryloyl-(l)-tryptophane methyl ester (MATrp) as a hydrophobic monomer were prepared by surfactant free emulsion polymerization of 2-hydroxyethyl methacrylate (HEMA), (MATrp) conducted in an aqueous dispersion medium. MATrp was synthesized using methacryloyl chloride and (l)-tryptophane methyl ester. Specific surface area of the non-porous nanospheres was found to be 1902.3 m2/g. poly(HEMA–MATrp) nanospheres were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and scanning electron microscopy (SEM). Average particle size and size distribution measurements were also performed. Elemental analysis of MATrp for nitrogen was estimated at 1.36 mmol/g nanospheres. Then, poly(HEMA–MATrp) nanospheres were used in the adsorption of porcine pancreas lipase in a batch system. Using an optimized adsorption protocol, a very high loading of 558 mg enzyme/g nanospheres was obtained. The adsorption phenomena appeared to follow a typical Langmuir isotherm. The Km value for immobilized lipase (16.26 mM) was higher than that of free enzyme (10.34 mM). It was observed that enzyme could be repeatedly adsorbed and desorbed without significant loss in adsorption amount or enzyme activity. These findings show considerable promise for this material as an adsorption matrix in industrial processes.  相似文献   

6.
We investigated the protein binding affinity of magnetite (Fe3O4) and maghemite (gamma-Fe2O3) nanoparticles with against non-characterized protein from human lung cancer A549 cell line on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The binding ability of maghemite was 400 ng/mg. According to the SDS-PAGE results, the protein binding affinity of maghemite nanoparticles is stronger than magnetite nanoparticles. These data suggest that a protein can be detected with maghemite nanoparticles.  相似文献   

7.
Tandem protein G affinity and reversed-phase chromatography (RPC) columns, coupled with a switching valve, were used for on-line immunoassays of antibodies and antigens. Columns with reversibly immobilized antibodies were prepared by adsorbing antibodies on the protein G column. Following antigen capture in the immunoaffinity column, antigen-antibody complexes were desorbed, dissociated, and transferred to the RPC column where they were separated and quantified. This system was used to determine the titer of a rabbit anti-human transferrin antibody sample with a precision of +/- 2%. Quantitation of human transferrin in human serum had a precision of +/- 6% and showed good agreement with rate nephelometry. The linear dynamic range for the transferrin, antigen immunoassay was 5 x 10(1) to 1 x 10(5) ng with a precision of +/- 3.5%.  相似文献   

8.
Titanium oxide-Ag composite (TOAC) adsorbents were prepared by a facile solution route with Ag nanoparticles being homogeneously dispersed on layered titanium oxide materials. The as-synthesized TOAC exhibited a remarkable capability for trace Cr(VI) removal from an aqueous solution, where the concentration of Cr(VI) could be decreased to a level below 0.05 mg/L within 1h. We have systematically investigated the factors that influenced the adsorption of Cr(VI), for example, the pH value of the solution, and the contact time of TOAC with Cr(VI). We found that the adsorption of Cr(VI) was strongly pH-dependent. The adsorption behavior of Cr(VI) onto TOAC fitted well the Langmuir isotherm and a maximum adsorption capacity of Cr(VI) as 25.7 mg/g was achieved. The adsorption process followed the pseudo-second-order kinetic model, which implied that the adsorption was composed of two steps: the adsorption of Cr(VI) ions onto TOAC followed by the reduction of Cr(VI) to Cr(III) by Ag nanoparticles. Our results revealed that TOAC with high capacity of Cr(VI) removal had promising potential for wastewater treatment.  相似文献   

9.
Ma SH  Lee XH  Teng TC  Yu YW  Sun CC 《Applied optics》2007,46(22):5430-5434
An out-of-plane angular detection scheme with random phase encoding is proposed. A ground glass is attached on a rod, which is rotated around a center point, so that the rotation of the rod induces the displacement of the ground glass in a circular path. To enhance the rotational sensitivity we adjust the Bragg selectivity of the volume holographic optical element encoded by random phase. Therefore, the rotational sensitivity can be tuned over a large range from several degrees to ten thousandth degrees by changing the radius of rotation. The theoretical calculation, as well as experiment, is demonstrated.  相似文献   

10.
Properties of biological fitness landscapes are of interest to a wide sector of the life sciences, from ecology to genetics to synthetic biology. For biomolecular fitness landscapes, the information we currently possess comes primarily from two sources: sparse samples obtained from directed evolution experiments; and more fine-grained but less authentic information from ‘in silico’ models (such as NK-landscapes). Here we present the entire protein-binding profile of all variants of a nucleic acid oligomer 10 bases in length, which we have obtained experimentally by a series of highly parallel on-chip assays. The resulting complete landscape of sequence-binding pairs, comprising more than one million binding measurements in duplicate, has been analysed statistically using a number of metrics commonly applied to synthetic landscapes. These metrics show that the landscape is rugged, with many local optima, and that this arises from a combination of experimental variation and the natural structural properties of the oligonucleotides.  相似文献   

11.
The recognition process between a protein and a partner represents a significant theoretical challenge. In silico structure-based drug design carried out with nothing more than the three-dimensional structure of the protein has led to the introduction of many compounds into clinical trials and numerous drug approvals. Central to guiding the discovery process is to recognize active among non-active compounds. While large-scale computer simulations of compounds taken from a library (virtual screening) or designed de novo are highly desirable in the post-genomic area, many technical problems remain to be adequately addressed. This article presents an overview and discusses the limits of current computational methods for predicting the correct binding pose and accurate binding affinity. It also presents the performances of the most popular algorithms for exploring binary and multi-body protein interactions.  相似文献   

12.
Patterning of biomolecules on surfaces is an increasingly important technological goal. Because the fabrication of biomolecule arrays often involves stepwise, spatially resolved derivatization of surfaces, spectroscopic imaging of these arrays is important in their fabrication and optimization. Although imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a powerful method for spatially resolved surface analysis, TOF-SIMS images of micropatterned proteins on organic substrates can be difficult to acquire, because of the lack of high intensity, protein-specific molecular ions that are essential for imaging under static conditions. In contrast, low-mass ions are of suitable intensity for imaging, but can originate from different chemical species on the surface. A potential solution to this problem is to utilize stable isotope labeled proteins, an approach that has heretofore not been explored in TOF-SIMS imaging of micropatterned proteins and peptides. To investigate the feasibility of stable isotope enhanced TOF-SIMS imaging of proteins, we synthesized 15N-labeled streptavidin by labeling of the protein during expression from a recombinant gene. The spatial distribution of streptavidin bound to biotin micropatterns, fabricated on a polymer and on a self-assembled monolayer on gold, was imaged by TOF-SIMS. Imaging of high-intensity, low-m/z secondary ions (e.g., C15N-) unique to streptavidin enabled unambiguous spatial mapping of the micropatterned protein with a lateral resolution of a few micrometers. TOF-SIMS imaging of micropatterned 15N-labeled streptavidin also illustrated the exquisite sensitivity of TOF-SIMS to low fractional coverage of protein (5 A effective thickness) in the background regions of the protein micropattern.  相似文献   

13.
A procedure is described for the reproducible preparation of very low-capacity strong-base anion-exchange resins. The resins are intended for use in single column ion chromatography and range in capacity from less than 0.005 meq/g to 0.16 meq/g when XAD-1 is used as a substrate. Capacities can typically be reproduced to within a few microequivalents per gram on successive batches. It is believed that the ion-exchange groups are introduced on the surface of the resin.  相似文献   

14.
Protein A based rapid affinity chromatography for quantitation of various immunoglobulins of class G (IgG) is described. Three-minute analysis using either citrate or phosphate buffers and detection with 220- or 280-nm ultraviolet absorption was found to be optimum for quantitation of IgG from 0.25 to 250 micrograms of IgG on-column with a percent relative standard deviation (% RSD) of 2-3% RSD. The method has a detection limit estimated to be 100 ng of IgG on-column. It has been used to analyze a variety of IgG-containing samples from such diverse sources as hybridoma selection, media cultivation, and purification studies. Gradient elution studies and the relationship of IgG elution to IgG isoelectric point (pI) are also described.  相似文献   

15.
Immobilized metal affinity chromatography (IMAC) was investigated for its ability to characterize the histidine-related surface structure of a protein, that is, a histidine residue's surface accessibility and its potential involvement in intramolecular interactions. T4 lysozyme was chosen as the model protein. Seven amino acid sites were selected on the basis of their relative surface accessibility, and they were substituted with histidine via site-directed protein mutagenesis to generate seven T4 lysozyme variants, each containing only one histidine residue on its surface, with various surface accessibility. IMAC was then used to experimentally quantify the interaction of each lysozyme variant with immobilized copper ions. A direct correlation was shown between the protein binding affinity and the surface accessibility of the histidine residue. Of all the lysozyme variants, K83H and K147H showed unusually low binding strength, as compared with variants having a histidine residue with a similar surface accessibility. However, with the aid of molecular modeling, their relatively low binding affinities were predicted to be the result of the involvement of the histidine residue in intramolecular interactions. In contrast to previously reported results, our results showed that lysozyme still binds to the IMAC column, even if its histidine residue is involved in intramolecular bonding, such as a hydrogen bond, albeit at reduced strength, as compared with the variant containing a histidine residue with a similar surface accessibility.  相似文献   

16.
Ion exchange phenomena have been investigated in a polymeric anion-exchange membrane prepared from cross-linked silicone polymer grafted with cationic groups. The affinity of different anions towards the membrane was inferred from impedance measurements in a electrolyte/insulator/semiconductor (EIS) electrochemical set up, allowing the survey of the detection limit, flat band potential and capacity variations. The selectivity of ion-exchange for a series of anions having a the same electrical charge followed the Hofmeister series. It was found that the affinity of anions and the electrical potential variations were related because the anion exchange inside the bulk of the membrane was correlated with the adsorption of anions at its surface. Electrical capacity measurements gave supplementary information which was difficult to rationalize because they depended on several parameters.  相似文献   

17.
Mallik R  Wa C  Hage DS 《Analytical chemistry》2007,79(4):1411-1424
Two techniques were developed for the immobilization of proteins and other ligands to silica through sulfhydryl groups. These methods made use of maleimide-activated silica (the SMCC method) or iodoacetyl-activated silica (the SIA method). The resulting supports were tested for use in high-performance affinity chromatography by employing human serum albumin (HSA) as a model protein. Studies with normal and iodoacetamide-modified HSA indicated that these methods had a high selectivity for sulfhydryl groups on this protein, which accounted for the coupling of 77-81% of this protein to maleimide- or iodoacetyl-activated silica. These supports were also evaluated in terms of their total protein content, binding capacity, specific activity, nonspecific binding, stability, and chiral selectivity for several test solutes. HSA columns prepared using maleimide-activated silica gave the best overall results for these properties when compared to HSA that had been immobilized to silica through the Schiff base method (i.e., an amine-based coupling technique). A key advantage of the supports developed in this work is that they offer the potential of giving greater site-selective immobilization and ligand activity than amine-based coupling methods. These features make these supports attractive in the development of protein columns for such applications as the study of biological interactions and chiral separations.  相似文献   

18.
19.
A sample containing carbon nanoparticles was obtained starting with the soot generated during combustion of inexpensive paraffin oil in a flame. The complexity of the sample, however, required fractionation to isolate its components. Anion-exchange high-performance liquid chromatography (AE-HPLC) was used for the analysis and collection of soot-derived carbon nanoparticles. The fractionated species were monitored by ultraviolet (UV) absorption and laser-induced photoluminescence detection, providing the chromatographic UV absorption and emission profiles of the separated sample. Chromatographic fractionation allowed for bulk measurements of electronic properties for individual fractions and further analysis via transmission electron microscopy (TEM). TEM of fractionated species showed a predominant size of about 4-5 nm diameter particulates. A general trend between photoluminescence and elution time was observed; the later eluting species in the chromatogram exhibited photoluminescence at longer wavelengths than the early eluting species. The AE-HPLC approach can have an immediate impact on the analysis and fractionation of various other nanomaterials, demonstrated here by analyzing samples containing graphitic oxide nanoparticles.  相似文献   

20.
The design and synthesis of bio-nano hybrid materials can not only provide new materials with novel properties, but also advance our fundamental understanding of interactions between biomolecules and their abiotic counterparts. Here, we report a new approach to achieving such a goal by growing CdS quantum dots (QDs) within single crystals of lysozyme protein. This bio-nano hybrid emitted much stronger red fluorescence than its counterpart without the crystal, and such fluorescence properties could be either enhanced or suppressed by the addition of Ag(I) or Hg(II), respectively. The three-dimensional incorporation of CdS QDs within the lysozyme crystals was revealed by scanning transmission electron microscopy with electron tomography. More importantl~ since our approach did not disrupt the crystalline nature of the lysozyme crystals, the metal and protein interactions were able to be studied by X-ray crystallography, thus providing insight into the role of Cd(II) in the CdS QDs formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号