首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Chronic nicotine infusions have been found to significantly improve working memory performance in the radial-arm maze. This effect is blocked by co-infusions of the nicotinic antagonist mecamylamine. Acute nicotine injections also improve working memory performance in the radial-arm maze. This effect is also blocked by mecamylamine co-administration. Recent local infusions studies have demonstrated the importance of the ventral hippocampus for nicotinic involvement in memory. Local infusions of mecamylamine, DHbetaE or MLA impair working memory performance on the radial-arm maze. The current study was conducted to determine the importance of the ventral hippocampus for the chronic effects of nicotine. Rats were trained on the working memory task in an eight-arm radial maze. After acquisition they underwent either infusions of ibotenic acid lesions or vehicle infusions and received subcutaneous implants of osmotic minipumps that delivered either nicotine at a dose of 5 mg kg-1 day-1 or vehicle in a 2x2 design. The rats then were given 2 days of recovery and were tested on the radial-arm maze three times per week for the next 4 weeks. As seen in previous studies, in the sham lesioned group nicotine infusions caused a significant improvement in choice accuracy. In contrast no nicotine-induced improvement was seen in the rats after ibotenic acid lesions of the ventral hippocampus. The effect of nicotine was blocked even though this lesion did not cause a deficit in performance. Previous work showed that chronic nicotine infusion still caused a significant improvement in working memory performance in the radial-arm maze after knife-cut lesions of the fimbria-fornix carrying the septo-hippocampal cholinergic innervation. Thus it appears that it is the postsynaptic nicotinic receptors in the ventral hippocampus which are critically important for the expression of the chronic nicotine induced working memory improvement.  相似文献   

2.
Acetylcholine (ACh) systems have been widely shown to be important for memory. In particular, ACh hippocampal neurons are critical for memory formation, though ACh innervation of other areas such as the nucleus accumbens may also be important. There has also been increasing interest in ACh and dopaminergic (DA) interactions with regard to short-term spatial memory. In a series of studies, we have found that ACh and DA agonists and antagonists given systemically interact to influence memory. The critical neural loci of these interactions are not currently known. In the present study, we used local infusion techniques to examine the role of ACh and DA transmitter systems in the nucleus accumbens and the ventral hippocampus on radial-arm maze (RAM) working memory performance. Into the nucleus accumbens of rats, we infused the nicotinic ACh agonist nicotine, the nicotinic ACh antagonist mecamylamine, the DA agonist apomorphine, or the DA antagonist haloperidol. Into the ventral hippocampus, we infused nicotine, mecamylamine, the muscarinic ACh agonist pilocarpine, or the muscarinic ACh antagonist, scopolamine. The nicotinic ACh and DA interaction was tested by a hippocampal infusion of mecamylamine alone or together with the DA D2 agonist quinpirole given via subcutaneous injection. The results confirmed that both nicotinic and muscarinic ACh receptors in the ventral hippocampus play a significant role in spatial working memory. Blockade of either nicotinic or muscarinic ACh receptors caused significant impairments in RAM choice accuracy. However, infusion of either nicotinic or muscarinic agonists failed to improve choice accuracy. The interaction of DA D2 systems in different with hippocampal nicotinic blockade than with general nicotinic blockade. Systemic administration of quinpirole potentiated the amnestic effect of mecamylamine infused into the ventral hippocampus, whereas it was previously found to reverse the amnestic effect of systemically administered mecamylamine. In contrast to the significant effects of mecamylamine in the hippocampus, no effects were found after infusion into the nucleus accumbens. Nicotine also was not found to have a significant effect on memory after intra-accumbens infusion. Neither the DA agonist apomorphine nor the DA antagonist haloperidol had a significant effect on memory after infusion into the nucleus accumbens. This study provides support for the involvement of nicotinic and muscarinic receptors in the ventral hippocampus in memory function. Ventral hippocampal nicotinic systems have significant interactions with D2 systems, but these differ from their systemic interactions. In contrast, nicotinic ACh and DA systems in the nucleus accumbens were not found in the current study to be important for working memory performance in the RAM.  相似文献   

3.
Rats with excitotoxic lesions of the dorsal or ventral hippocampus and control rats were trained on 2 spatial working memory tasks: the standard version of the radial maze with 8 baited arms and the nonmatching-to-place procedure in the T maze. Dorsal lesions produced deficits in both tasks, whereas ventral lesions did not affect learning in either of them. A volumetric analysis of subicular damage showed that dorsal hippocampal lesions caused a deficit in the nonmatching-to-place only when accompanied by damage to the dorsal subiculum; on the other hand, lesions to the dorsal hippocampus impaired performance in the radial-arm maze regardless of the extent of subicular damage. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
Neonatal excitotoxic damage of the ventral hippocampus (VH) is a heuristic model of schizophrenia. We investigated whether: (1) neonatal damage of the medial prefrontal cortex (mPFC) has effects similar to the neonatal VH lesion; and (2) intrinsic mPFC neurons contribute to the abnormal behaviors associated with VH lesions. Neonatal rats were lesioned in the mPFC. In adulthood, they showed attenuated locomotion in response to novelty, amphetamine, and MK-801, and enhanced apomorphine-induced stereotypies as compared to controls. Striatal D1 and D2 receptor mRNAs were unaltered. Another group was lesioned in the VH and additionally in the mPFC in adulthood. Destroying mPFC neurons normalized hyperlocomotion to novelty and amphetamine of the neonatally VH lesioned rats. Thus, neonatal damage of the mPFC does not provide a heuristic model of schizophrenia-like phenomena, in contrast to analogous damage of the VH. However, mPFC intrinsic neurons that have developed in the context of abnormal hippocampal connectivity may be responsible for abnormal behaviors in the neonatally VH lesioned rats.  相似文献   

5.
We have demonstrated in our previous studies that ventral subicular lesion induces neurodegeneration of the hippocampus and produces cognitive impairment in rats. In the present study, the efficacy of transplanted green fluorescent protein (GFP)-labeled hippocampal cell line (H3-GFP) cells in establishing functional recovery in ventral subicular lesioned rats has been evaluated. The survival of H3-GFP transplants and their ability to express trophic factors in vivo were also investigated. Adult male Wistar rats were subjected to selective lesioning of ventral subiculum and were transplanted with H3-GFP cells into the cornu ammonis 1 (CA1) hippocampus. The transplants settled mainly in the dentate gyrus and expressed neurotrophic factors, brain-derived neurotrophic factor (BDNF), and basic fibroblast growth factor (bFGF). The ventral subicular lesioned (VSL) rats with H3-GFP transplants showed enhanced expression of BDNF in the hippocampus and performed well in eight-arm radial maze and Morris water maze tasks. The VSL rats without hippocampal transplants continued to show cognitive impairment in task learning. The present study demonstrated the H3-GFP transplants mediated recovery of cognitive functions in VSL rats. Our study supports the notion of graft meditated host regeneration and functional recovery through trophic support, although these mechanisms require further investigation. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
Lesions of the septohippocampal pathway produce cognitive deficits that are partially attenuated by grafts of cholinergic-rich tissue into denervated target regions or by systemic administration of cholinomimetic drugs. In the present study, fibroblasts engineered to produce acetylcholine were used to test the hypothesis that restoration of hippocampal acetylcholine in rats with septohippocampal lesions is sufficient to improve cognitive processing post-damage. Rats received unilateral grafts of acetylcholine-producing or control fibroblasts into the hippocampus immediately prior to an aspirative lesion of the ipsilateral fimbria-fornix. Some rats with fimbria-fornix lesions were implanted with acetylcholine-producing or control fibroblasts into the neocortex, another major target of the basal forebrain cholinergic system, to determine if the site of acetylcholine delivery to the damaged brain is critical for functional recovery. Rats were tested in a hidden platform water maze task, a cued water maze task and activity chambers between one and three weeks post-grafting. Compared to unoperated controls, rats with fimbria fornix lesions only were significantly impaired in hidden platform water maze performance. Hippocampal grafts of acetylcholine-producing cells reduced lesion-induced deficits in the water maze, whereas hippocampal control grafts and cortical grafts of either cell type were without effect. Locomotor activity and cued water maze performance were unaffected by the lesion or the implants. Taken together, these data indicate that water maze deficits produced by fimbria fornix lesions, which disrupt a number of hippocampal neurotransmitter systems, can be attenuated by target specific replacement of acetylcholine in the hippocampus and that this recovery occurs in the absence of circuitry repair.  相似文献   

7.
In humans and animal models there is evidence that prenatal nicotine exposure causes lasting deficits in cognitive performance. The current study examined the cognitive effects of prenatal exposure of rats to 2 mg/kg/day of nicotine. This dose did not cause significant deficits in maternal weight gain, offspring litter size, or pup weight. The control offspring showed the normal ontogeny of spontaneous alternation from near chance (50%) performance to 80%-85% alternation. In contrast, the nicotine-exposed rats had the opposite progression with abnormally high alternation on days 22-30 and abnormally low alternation on days 35-52. Acquisition of choice accuracy performance on the radial-arm maze (RAM) was not altered in a major way by nicotine exposure. Minor nicotine-induced changes in choice accuracy were seen during the initial trials of acquisition. The nicotine exposed female offspring had a significantly longer response duration. Prenatal nicotine exposure did significantly alter the effects of subsequent drug challenges on choice accuracy performance. The nicotine-exposed male offspring were significantly more responsive to the amnestic effects of the nicotinic antagonist mecamylamine. In a subsequent challenge, the effects of the beta-adrenergic antagonist propranolol were examined. A significant dose-related impairment in choice accuracy was seen in the control rats. In contrast, the nicotine-exposed rats did not show any significant response to propranolol. This decreased responsiveness to adrenergic challenge parallels the reduction in adrenergic response to nicotine challenge we previously found in littermates to the rats of the current study. Prenatal nicotine exposure causes subtle alterations in cognitive performance that can be magnified by challenges of nicotinic and adrenergic systems.  相似文献   

8.
Subcortical damage in neonates often has more severe consequences than in adults. Unilateral electrolytic hippocampal lesions in adult rats typically result in transient memory deficits, whereas neonatal lesions cause lasting memory impairments. We hypothesized that unilateral lesions made at birth may affect synaptic physiology in the contralateral hippocampus. Consequently, the ability to sustain long-term potentiation (LTP), a form of synaptic plasticity believed to underlie certain forms of memory, was compared between slices from the remaining hippocampus of rats lesioned as newborns and as adults. Initial studies showed that a train of 10 stimulation bursts patterned after the hippocampal theta rhythm produced robust and stable LTP both in slices from controls and rats lesioned at birth. However, a theta burst pattern of stimulation closer to intrinsic physiology (five burst pairs separated by 30 s each), induced significantly less LTP in slices from rats lesioned at birth compared to those from controls and rats lesioned as adults. To investigate possible mechanisms underlying the deficit, the degree of paired-pulse facilitation (PPF) as well as the amount of depolarization occurring between two successive theta bursts were analyzed. The lesion did not detectably change PPF characteristics, suggesting that presynaptic mechanisms are normal. However, the extent to which a burst response was increased by a prior burst was significantly diminished in slices from rats lesioned at birth compared to those from controls and rats lesioned as adults, indicating that postsynaptic factors involved in the initial triggering events of LTP are affected by the lesion. Reduced ability to sustain LTP in the remaining hippocampus may contribute to impaired memory function after unilateral neonatal hippocampal lesion.  相似文献   

9.
The effect of neonatal hippocampal lesions on behavioral sensitivity to amphetamine (AMPH) and dopamine (DA) release in the nucleus accumbens (NAc) were examined. The ventral hippocampus was damaged bilaterally by ibotenic acid on postnatal day 7 (PD7). Spontaneous exploration and AMPH-stimulated locomotor activity were examined on postnatal day 35 (PD35) and day 56 (PD56). Extracellular DA, dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were sampled using in vivo microdialysis while simultaneously AMPH-stimulated locomotion was examined in freely moving rats on PD56. Spontaneous exploration increased in rats with hippocampal lesions relative to controls on PD56 but not PD35. AMPH (0, 0.187, 0.375, 0.75, 1.5, and 3 mg/kg) enhanced locomotion dose-dependently in both control and lesioned groups. Locomotor activity was higher in lesioned rats than controls following AMPH at the dose of 0.75 mg/kg on PD35 and at the doses of 1.5 and 3.0 mg/kg on PD56. The basal level of DA in the NAc was not different between the hippocampal and control groups. AMPH (1.5 mg/kg) induced hyperlocomotion in lesioned rats relative to controls. DA release in the NAc for both groups was enhanced following injections of AMPH. However, neonatal hippocampal lesions had no further enhancement on AMPH-stimulated release of DA as compared to the control group. The levels of DOPAC and HVA in the NAc were altered by AMPH but not lesions. The level of 5-HIAA was not influenced by either lesions or AMPH. The results of neonatal lesion-induced hyperlocomotion suggest that an emergence of behavioral hyperresponsiveness to AMPH was dependent on an interaction of lesions, age of examination, and dose of the drug. A dissociation between the effect of AMPH on lesion-enhanced hyperlocomotion and a lack of a lesion-enhanced DA release in the NAc suggest that presynaptic release of DA had no major contribution to lesion-enhanced DA transmission in the mesolimbic DA system.  相似文献   

10.
This study investigated the effects of neonatal hippocampal ablation on the development of spatial learning and memory abilities in rats. Newborn rats sustained bilateral electrolytic lesions of the hippocampus or were sham-operated on postnatal day 1 (PN1). At PN20-25, PN50-55, or PN90-95, separate groups of rats were tested in a Morris water maze on a visible "cue" condition (visible platform in a fixed location of the maze), a spatial "place" condition (submerged platform in a fixed location), or a no-contingency "random" condition (submerged platform in a random location). Rats were tested for 6 consecutive days, with 12 acquisition trials and 1 retention (probe) trial per day. During acquisition trials, the rat's latency to escape the maze was recorded. During retention trials (last trial for each day, no escape platform available), the total time the rat spent in the probe quadrant was recorded. Data from rats with hippocampal lesions tested as infants (PN20-25) or as adults (PN50-55 and PN90-95) converged across measures to reveal that 1) spatial (place) memory deficits were evident throughout developmental testing, suggesting that the deficits in spatial memory were long-lasting, if not permanent, and 2) behavioral performance measures under the spatial (place) condition were significantly correlated with total volume of hippocampal tissue damage, and with volume of damage to the right and anterior hippocampal regions. These results support the hypothesis that hippocampal integrity is important for the normal development of spatial learning and memory functions, and show that other brain structures do not assume hippocampal-spatial memory functions when the hippocampus is damaged during the neonatal period (even when testing is not begun until adulthood). Thus, neonatal hippocampal damage in rats may serve as a rodent model for assessing treatment strategies (e.g., pharmacological) relevant to human perinatal brain injury and developmental disabilities within the learning and memory realm.  相似文献   

11.
In 4 experiments with 180 male Wistar and Long-Evans rats, Ss with bilateral dorsal hippocampal lesions were impaired when tested on standard (noncued) versions of the radial-arm maze, but other hippocampal groups performed almost as well as cortical and operated control groups when salient visual cues were added to each arm. Preoperative training on the noncued, but not the cued, maze interfered with the benefits of postoperatively cuing hippocampal groups. Control groups performed equally well under all cuing and training conditions. Procedures that eliminated response sequencing did not affect performance of hippocampal or control groups. Results are interpreted as reflecting hippocampal involvement in mediating spatial cues, but not necessarily along the lines predicted by cognitive map theory. It is suggested that deficits of animals with hippocampal lesions represent 1 manifestation of a general impairment in processing information. (39 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
Electrolytic medial septal (MS) lesions, which depleted acetylcholinesterase staining in both dorsal and ventral hippocampus, produced a constellation of behaviors, combining aspects of both selective dorsal and ventral hippocampal lesion effects. MS lesions impaired spatial working memory on the T maze, thus resembling the effects of dorsal hippocampal lesions. In addition, MS lesions reduced anxiety during successive alleys (a modified form of the elevated plus-maze), social interaction, and hyponeophagia tests. MS lesions also reduced postshock freezing. These effects more closely resemble those of ventral hippocampal lesions. Therefore, the effects of electrolytic MS lesions derive from the resulting combined deafferentation of dorsal and ventral hippocampal regions, suggesting that previously reported effects of cytotoxic dorsal hippocampal lesions are unlikely to be due to a demyelination of fibers of passage coursing through the septal pole. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
The monosialoganglioside GM1 is a compound with neurotrophic properties found to foster functional recovery in various paradigms of brain damage. The present experiment examined whether systemic treatment with GM1 may facilitate behavioral recovery in rats with fimbria-fornix lesions and intrahippocampal grafts rich in cholinergic neurons. Among 68 Long-Evans female rats, 46 sustained a bilateral electrolytic lesion of the fimbria and the dorsal fornix and 22 were sham-operated. Fourteen days later, half the lesioned rats were subjected to intrahippocampal grafts of a fetal septal cell suspension. Starting a few hours after lesion surgery and over a 2-month period, half the rats of each surgical treatment group received a daily injection of GM1 (30 mg/kg i.p.), the other half being injected with saline as a control. All rats were subsequently tested for locomotor activity and radial maze learning. The lesions induced locomotor hyperactivity and impaired learning performances in both an uninterrupted and an interrupted radial maze testing procedure. In all rats with surviving grafts, the grafts had provided the hippocampus with a new and dense organotypic acetylcholinesterase-positive innervation pattern which did not differ between saline- and GM1-treated subjects. The scores/performances of the rats that had received only the grafts or only the GM1 treatment did not differ significantly from those of their respective lesion-only counterparts. However, in the radial-arm maze task, the grafted rats given GM1 showed improved learning performances as compared with their saline-treated counterparts: they used more efficient visit patterns under the uninterrupted testing conditions and made fewer errors under the interrupted ones. The results suggest that GM1 treatment or intrahippocampal grafts used separately do not attenuate the lesion-induced behavioral deficits measured in this experiment. However, when GM1 treatment and grafts are used conjointly, both may interact in a manner allowing part of these deficits to be attenuated.  相似文献   

14.
Rats with complete cytotoxic hippocampal lesions exhibited spatial memory impairments in both the water maze and elevated T maze. They were hyperactive in photocell cages; swam faster in the water maze; and were less efficient on a nonspatial, differential reinforcement of low rates (DRL) task. Performance on both spatial tasks was also impaired by selective dorsal but not ventral lesions; swim speed was increased by ventral but not dorsal lesions. Both partial lesions caused a comparable reduction in DRL efficiency, although these effects were smaller than those of complete lesions. Neither partial lesion induced hyperactivity when rats were tested in photocell cages, although both complete and ventral lesion groups showed increased activity after footshock in other studies (Richmond et al., see record 1999-01985-006). These results demonstrate possible functional dissociations along the septotemporal axis of the hippocampus. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
The effects of hippocampal and lateral septum lesions were compared in rats tested in a water maze spatial memory task, and the effect of chlordiazepoxide (CDP) was examined. There was a significant interaction for lesion and CDP in the septal lesioned subjects, with the lesioned animals performing worse than control animals, and CDP improving the performance of lesioned animals. CDP had no effect on impaired performance in hippocampal lesioned animals.  相似文献   

16.
This research examined cognitive and motivational processes at different developmental stages in rats with neonatal ventral hippocampus (VH) lesions, an approach used to model schizophrenia. In Experiment 1, performance in a T-maze alternation task was assessed on postnatal days (PNDs) 22 and 23. VH-lesioned rats displayed a severe deficit relative to controls. In Experiment 2, behaviorally naive rats were tested for spontaneous alternation at PND 29. Alternation was intact in VH-lesioned rats only when successive alternations were separated by >5 s. In Experiment 3, motivation was tested in a cost-benefit T-maze task and in a saccharine-water preference test. Between PNDs 22-37, behaviorally naive rats with neonatal VH lesions displayed weaker saccharine preference than controls, but the 2 groups did not differ on the cost-benefit task. At adulthood, between PNDs 56-72, the difference on saccharine preference persisted and an impairment on the cost-benefit task emerged. Overall, these results suggest that working memory deficits observed at the weaning stage were not secondary to spontaneous alternation or motivation dysfunctions. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
Rats with limbic system damage display increases in responsivity to sensory stimulation and changes in the sensitivity to amphetamine, suggesting that their condition may parallel that of human schizophrenia. This experiment examined locomotion and stereotyped behavior in mature, male rats that had received aspirative lesions of the hippocampus, control lesions of the overlying parietal cortex, or were unoperated controls. Locomotion, measured as photocell beam breaks, was recorded during 2- or 3-h test sessions. Behavioral stereotypy was simultaneously rated. Hippocampal lesioned rats exhibited a selective enhancement in locomotion following D-amphetamine (0.0-5.6 mg/kg) when compared to animals in the control groups. Similar results were observed following injections of apomorphine (0.0-0.25 mg/kg), a mixed D1 and D2 agonist. In order to determine if D1 or D2 receptors were involved in this increased locomotion, the D1 agonist SKF 38393 (0.0-15 mg/kg) and the D2 agonist quinpirole (0.0-0.5 mg/kg) were tested alone and in combination. Hippocampal-ablated rats showed significantly increased locomotion only in response to quinpirole, suggesting that these lesion-induced increases were largely mediated by D2 receptors. When both drugs were administered together, SKF 38393 further enhanced the locomotor stimulating effects of quinpirole in hippocampal lesioned rats, indicating a synergistic interaction between D1 and D2 receptors in the modulation of locomotion. These findings provide further evidence of hippocampal modulation of locomotion and suggest that dopaminergic mechanisms in the nucleus accumbens, probably involving changes in receptor sensitivity, are involved. The results are discussed in relation to the functional roles of the nucleus accumbens and in terms of their implications for mental diseases including schizophrenia.  相似文献   

18.
Ischemia-induced cell loss in the CA1 region of the dorsal hippocampus results in severe deficits on delayed non-matching-to-sample (DNMS), whereas hippocampectomy produces little or no impairment, suggesting that partial hippocampal damage is more detrimental to DNMS performance than total ablation. To test this hypothesis, rats with or without preoperative DNMS training were given partial cytotoxic lesions of the dorsal hippocampus. When tested, neither group displayed any DNMS deficits despite widespread cell loss in the CA1 and other regions of the dorsal hippocampus. In the final experiments, rats tested previously on DNMS were found to be impaired on the Morris water maze. The finding that partial hippocampal lesions disrupt spatial memory while leaving object-recognition memory intact indicates a specialized role for the hippocampus in mnemonic processes. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
Reports an error in "Acquisition of a complex place task in rats with selective ibotenate lesions of hippocampal formation: Combined lesions of subiculum and entorhinal cortex versus hippocampus" by John-Paul Bouffard and Leonard E. Jarrard (Behavioral Neuroscience, 1988[Dec], Vol 102[6], 828-834). This article's corresponding plate appears on page 995. The information should read, "Plate A. Photomicrographs of horizontal, cresyl violet stained sections at dorsal, middle, and ventral levels of the brain for an unoperated control rat (left), an animal from the Subiculum + Entorhinal lesion group (middle), and a rat from the hippocampus group (right)." (The following abstract of the original article appeared in record 1989-28756-001.) The effects of isolating the hippocampus from its neocortical inputs and outputs by damaging the deep layers of entorhinal cortex and subiculum were compared with direct removal of the hippocampus using acquisition of a complex radial maze task. A series of eight problems (four out of eight arms being correct) were learned under either massed (45 s) or distributed (10 min) practice conditions, thus varying contextual information. Performance of rats with subiculum/entorhinal cortex lesions was similar to that of controls in all aspects of the radial maze task; whereas animals with hippocampal lesions were impaired on nearly all dependent measures. Although the effects of varying the intertrial interval were generally small, distributed practice did serve to facilitate the performance of hippocampal rats in terms of working memory. These findings are discussed as they related to recent theorizing in the area. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

20.
The exogenous administration of cytidine-5'-diphosphate (CDP)-choline has been used extensively as a brain activator in different neurological disorders that are associated with memory deficits. A total of 50 rats were utilized to (a) determine whether exogenously administered CDP-choline could attenuate posttraumatic motor and spatial memory performance deficits and (b) determine whether intraperitoneal (i.p.) administration of CDP-choline increases acetylcholine (ACh) release in the dorsal hippocampus and neocortex. In the behavioral study, traumatic brain injury (TBI) was produced by lateral controlled cortical impact (2-mm deformation/6 m/sec) and administered CDP-choline (100 mg/kg) or saline daily for 18 days beginning 1 day postinjury. At 1 day postinjury, rats treated with CDP-choline 15 min prior to assessment performed significantly better than saline-treated rats. Between 14-18 days postinjury, CDP-choline-treated rats had significantly less cognitive (Morris water maze performance) deficits that injured saline-treated rats. CDP-choline treatment also attenuated the TBI-induced increased sensitivity to the memory-disrupting effects of scopolamine, a muscarinic antagonist. The microdialysis studies demonstrated for the first time that a single i.p. administration of CDP-choline can significantly increase extracellular levels of ACh in dorsal hippocampus and neocortex in normal, awake, freely moving rats. This article provides additional evidence that spatial memory performance deficits are, at least partially, associated with deficits in central cholinergic neurotransmission and that treatments that enhance ACh release in the chronic phase after TBI may attenuate cholinergic-dependent neurobehavioral deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号