首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
Silica-based planar lightwave circuit (PLC) hybrid integration is a promising way to provide highly functional photonic components. This paper is an overview of recent progress in PLC hybrid integration technology including optoelectronic semiconductor devices for the hybrid integration, various devices for wavelength-division multiplexing, and all-optical time-division multiplexing  相似文献   

2.
3.
Plasma-induced quantum well intermixing (QWI) has been developed for tuning the bandgap of III-V compound semiconductor materials using an inductively coupled plasma system at the postgrowth level. In this paper, we present the capability of the technique for a high-density photonic integration process, which offers three aspects of investigation: 1) universality to a wide range of III-V compound material systems covering the wavelength range from 700 to 1600 nm; 2) spatial resolution of the process; and 3) single-step multiple bandgap creation. To verify the monolithic integration capability, a simple photonic integrated chip has been fabricated using Ar plasma-induced QWI in the form of a two-section extended cavity laser diode, where an active laser is integrated with an intermixed low-loss waveguide.  相似文献   

4.
Optoelectronic-VLSI: photonics integrated with VLSI circuits   总被引:1,自引:0,他引:1  
Optoelectronic-VLSI (OE-VLSI) technology represents the intimate integration of photonic devices with silicon VLSI electronics. We review the motivations and status of emerging OE-VLSI technologies and examine the performance of OE-VLSI technology versus conventional wire-bonded OE packaging. The results suggest that OE-VLSI integration offers substantial power and speed improvements even when relatively small numbers of photonic devices are driven with commodity complementary metal-oxide-semiconductor logic technologies  相似文献   

5.
By focused ion beam implantation induced thermal intermixing the bandgap of quantum-well layer structures can be selectively changed. This allows lateral bandgap engineering and gives a new degree of freedom for lateral structuring. The principle technological aspects like the dependence of the bandgap shift on implantation parameters and the spatial resolution are investigated and applied to the fabrication of photonic and optoelectronic devices. Lateral waveguiding in InP-based materials, the possibility of monolithic integration of bandgap shifted waveguide areas into active devices and the improvement of the lateral carrier confinement in ridge waveguide lasers are demonstrated. Due to the high spatial resolution, modulated bandgap gratings could be realized with periods down to 90 mn. These bandgap gratings were used to create gain-coupled distributed-feedback lasers in different material systems with well controlled single-mode emission  相似文献   

6.
Chip-scale integrated planar photonic sensing systems for portable diagnostics and monitoring are emerging, as photonic components are integrated into systems with silicon (Si), Si complementary metal–oxide semiconductor, and fluidics. This paper reviews progress in these areas. Medical and environmental applications, candidate photonic sensors, integration methodologies, integrated subsystem demonstrations, and challenges facing this emerging field are discussed in this paper.   相似文献   

7.
《Potentials, IEEE》2007,26(3):36-41
This article presents theoretical optical data pathway model. The goal is to evaluate the physics behind photonic crystal/photon relationships and to develop a theoretical model for photonic crystal implementation into very large scale integration (VLSI) system design. One of the most popular applications of photonic crystals is the possibility of creating a new type of optical waveguide that surpasses the capabilities of present day optical communication equipment, i.e., fiber optics. Thus, further research used to determine the bandwidth capabilities of the data highway and clock synchronization between the signal generator and the receiving IC chip and the experiments based on laser diode switching are practiced to increase the speed  相似文献   

8.
In this paper, we introduce a robust monolithic integration technique for fabricating photonic integrated circuits comprising optoelectronic devices (e.g., surface-illuminated photodetectors, waveguide quantum-well modulators, etc.) that are made of completely separate epitaxial structures and possibly reside at different locations across the wafer as necessary. Our technique is based on the combination of multiple crystal growth steps, judicious placement of epitaxial etch-stop layers, a carefully designed etch sequence, and self-planarization and passivation steps to compactly integrate optoelectronic devices. This multigrowth integration technique is broadly applicable to most III-V materials and can be exploited to fabricate sophisticated, highly integrated, multifunctional photonic integrated circuits on a single substrate. As a successful demonstration of this technique, we describe integrated photonic switches that consume only a 300 /spl times/300 /spl mu/m footprint and incorporate InGaAs photodetector mesas and InGaAsP/InP quantum-well modulator waveguides separated by 50 /spl mu/m on an InP substrate. These switches perform electrically-reconfigurable optically-controlled wavelength conversion at multi-Gb/s data rates over the entire center telecommunication wavelength band.  相似文献   

9.
This work discusses photonic integration efforts toward developing an InP-based monolithically integrated photonic chip for optical code-division multiple-access (O-CDMA) system applications. The chip design includes the colliding pulsed mode (CPM) locked laser, the Mach-Zehnder interferometer-based threshold detector (MZI), and the monolithic O-CDMA encoder/decoder chip based on array-waveguide-gratings and phase modulator arrays. The compact 4 /spl times/ 1 cm monolithic chip can replace a complex and large O-CDMA setup based on bulk optics. The integration technique involves active-passive integration using dry etching, metal organic chemical vapor deposition growth, and lateral hydride vapor phase epitaxy regrowth technologies. The fabricated CPM showed stable 1.54 ps modelocked laser output, the MZI showed excellent O-CDMA threshold detection, and the O-CDMA encoder showed Walsh-code O-CDMA encoding. Further, the fabricated devices showed excellent planarity, which accelerate our progress toward monolithic integration of O-CDMA systems.  相似文献   

10.
III-V族微腔激光器中的P型金属电极通常采用的Ti-Pt-Au的合金方式,而其中的Ti层对通信波长1 550 nm的激光具有很强的吸收,不适合在高密度光子集成器件中使用。为了代替传统的合金方式,采用二维解析法计算单一金属Al和Ag金属限制下的微腔中光学模式品质因子,发现这两种新型电极具有更小损耗。另外在实验上分别制作金属Al和Ag的电极的微腔激光器,得到与理论预测一致的测试结果。由于这两种电极价格便宜,工艺简单并与CMOS工艺相容,因此在光子集成器件中具有很高的应用前景。  相似文献   

11.
All-optical label processing techniques for pure DPSK optical packets   总被引:1,自引:0,他引:1  
We present two all-optical label processing schemes for pure differential phase shift keying packets. The two techniques are based on the already used optical correlators and on a novel time-to-wavelength conversion of the label information. They require that the label information is encoded by using pulse position modulation, which makes the label processor simpler and can allow very fast processing speed. We investigate and compare the efficiency in terms of packet overhead of pulse position modulation coded labels with ordinary binary coding and show that pulse position modulation is still attractive for medium-size network and for system implementing optical label swapping. We then experimentally demonstrate that the two techniques can distinguish several labels at distinct outputs. Both operate at low optical power, asynchronously, and could allow for photonic integration. Scalability and processing speeds of the two systems are discussed. We also show that the two label processors can be used to implement an optical label swapping system. Experimental results show that the two labels are distinguished at two distinct ports and erased from the incoming packet, so that a new label can be inserted. Scalability and processing speed are discussed as well.  相似文献   

12.
We report the fabrication and the characterization of the refractometric and thermo-optical properties of a quasi-one-dimensional waveguide photonic crystal-a strong, 76-/spl mu/m-long Bragg grating. The transmission spectra (around 660 nm) of the structure have been measured as a function of both the cladding refractive index and the temperature. The transmission stopband was found to shift by 0.8-nm wavelength for either a cladding refractive index change of 0.05 or a temperature change of 120 K. The steep stopband edges provide a sensitive detection method for this band shift, by monitoring the transmitted output power.  相似文献   

13.
Photonic integrated circuits fabricated using ion implantation   总被引:1,自引:0,他引:1  
Intermixing the wells and barriers of quantum-well (QW) laser heterostructures generally results in an increase in the bandgap energy and is accompanied by changes in the refractive index. A technique, based on ion implantation-induced QW intermixing, has been developed to enhance the quantum-well intermixing (QWI) rate in selected areas of a wafer. Such processes offer the prospect of a powerful and simple fabrication route for the integration of discrete optoelectronic devices and for forming photonic integrated circuits  相似文献   

14.
Further development in optical fiber communications at 1.3 and 1.5 μm not only requires the improvement of components, but also hinges on the capability to fabricate optoelectronic circuits on a mass scale. Hybrid and monolithic integration of these components are expected to yield the means to mass produce optoelectronic circuits with the required characteristics. Effort is currently deployed to find simplified ways to optically interconnect such diverse components as lasers, modulators, waveguides, switches, filters and detectors, either by fiber pigtailing, hybridization on a Si-motherboard; or by monolithic integration on a single chip of InP. In this paper, emphasis is placed on the efficiency of optical-mode transformer (OMT) as a versatile solution to overcome the main technological obstacles of optical interconnection between InP-based components. A few examples will highlight the enabling qualities for fiber pigtailing and photonic integration  相似文献   

15.
We review the development trends and state-of-the-art technologies of large-port-count optical switches over the past decade. Practical implementation of optical switch fabrics is discussed in terms of optical switch architectures, optical configurations, port counts, switch elements, and so on. We describe compact and stable optical crossconnect three-dimensional microelectromechanical systems (3-D-MEMS) switches that are a key technology in recent photonic networks. To show how these enable simple, fast, and flexible wavelength applications in the photonic layer, we discuss the fast and stable MEMS switching by novel comb actuator and V-shaped torsion bar, compact optical configuration with roof-type mirror, stable switch housing with cubic structure, packaging techniques by tolerance expansion and simple procedures of the component assembly, MEMS mirror controller with fast and low power digital notch circuit, reliability by shock absorption, and field trials. In addition, we discuss the impact of these switches on system integration for recent metropolitan area networks and enterprise networks.  相似文献   

16.
Large-scale photonic integrated circuits   总被引:2,自引:0,他引:2  
100-Gb/s dense wavelength division multiplexed (DWDM) transmitter and receiver photonic integrated circuits (PICs) are demonstrated. The transmitter is realized through the integration of over 50 discrete functions onto a single monolithic InP chip. The resultant DWDM PICs are capable of simultaneously transmitting and receiving ten wavelengths at 10 Gb/s on a DWDM wavelength grid. Optical system performance results across a representative DWDM long-haul link are presented for a next-generation optical transport system using these large-scale PICs. The large-scale PIC enables significant reductions in cost, packaging complexity, size, fiber coupling, and power consumption.  相似文献   

17.
The silicon chip has been the mainstay of the electronics industry for the last 40 years and has revolutionized the way the world operates. Today, a silicon chip the size of a fingernail contains nearly 1 billion transistors and has the computing power that only a decade ago would take up an entire room of servers. As the relentless pursuit of Moore's law continues, and Internet-based communication continues to grow, the bandwidth demands needed to feed these devices will continue to increase and push the limits of copper-based signaling technologies. These signaling limitations will necessitate optical-based solutions. However, any optical solution must be based on low-cost technologies if it is to be applied to the mass market. Silicon photonics, mainly based on SOI technology, has recently attracted a great deal of attention. Recent advances and breakthroughs in silicon photonic device performance have shown that silicon can be considered a material onto which one can build optical devices. While significant efforts are needed to improve device performance and commercialize these technologies, progress is moving at a rapid rate. More research in the area of integration, both photonic and electronic, is needed. The future is looking bright. Silicon photonics could provide low-cost opto-electronic solutions for applications ranging from telecommunications down to chip-to-chip interconnects, as well as emerging areas such as optical sensing technology and biomedical applications. The ability to utilize existing CMOS infrastructure and manufacture these silicon photonic devices in the same facilities that today produce electronics could enable low-cost optical devices, and in the future, revolutionize optical communications.  相似文献   

18.
A novel type of two-dimensional photonic crystal is investigated for it optical properties as a core-shell-type ferroelectric nanorod infiltrated with nematic liquid crystals. Using the plane wave expansion method and finite-difference time-domain method, the photonic crystal structure, which is composed of a photonic crystal in a core-shell-type ferroelectric nanorod, is designed for the square lattice and the hexagonal lattice. It has been used 5CB as a photonic crystal core, and LiNbO3 as a ferroelectric material. The photonic crystal with a core-shell-type LiNbO3 nanorod infiltrated with nematic liquid crystals is compared with the photonic crystal with solid LiNbO3 rods and the photonic crystal with hollow LiNbO3 rods.  相似文献   

19.
Vertically coupled, wafer-bonded III-V semiconductor waveguide devices provide a means to obtain more powerful, compact photonic integrated circuits and allow for the combination of different materials onto a single chip. Various switching, filtering, multiplexing, and beam splitting devices in the InP-InGaAsP and GaAs-AlGaAs systems for signals in the 1550-nm range have been realized. An investigation of optimal optical add-drop multiplexer waveguide layout shapes has been performed through integration of the coupled-mode Riccati equation, providing potential sidelobe levels of less than -32 dB and filter bandwidths over 20% narrower than those of previous devices. Effects of nonideal processing conditions on filter performance are analyzed as well.  相似文献   

20.
High-speed control of lightwave using electrooptic (EO) effect is investigated in this paper. Agile optical frequency shift can be achieved by optical single-sideband (SSB) and frequency-shift-keying (FSK) modulators, where high-speed optical phase-shift-keying (PSK) signals can also be generated by using FSK/SSB modulators. We also describe ultrahigh extinction ratio optical intensity modulation (IM) technique for two-tone lightwave signals with high spurious suppression, which is useful for photonic microwave and millimeter-wave generation. In addition, we investigated high-order optical sideband generation techniques: quadruple dual-sideband suppressed carrier (QDSB-SC) modulation and reciprocating optical modulation (ROM). Sub-tetrahertz signals can be obtained from lightwaves with high-order sidebands  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号