首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
本文通过对炸药元素组成、产物组成和某些物理性质的研究探索,提出了一个和实验结果相符的计算碳、氢、氮、氧系列炸药爆速的经验公式。该式不依赖于巳知实验数据,能反映爆速与炸药分子结构、产物组成及某些特性之间的关系。  相似文献   

2.
本文通过对炸药元素组成、产物组成和某些物理性质的研究探索,提出了一个和实验结果相符的计算碳、氢、氮、氧系列炸药爆速的经验公式。该式不依赖于已知实验数据,能反映爆速与炸药分子结构、产物组成及某些特性之间的关系。  相似文献   

3.
通过建立“理想混合炸药”模型 ,发现理想混合炸药的爆速 Did与纯组分炸药的爆速 Di和质量分数 Wi之间存在着定量关系 ,据此发展了一种计算混合炸药爆速的新方法。对大量混合炸药的计算结果表明 ,爆速计算值与实验值的一致性令人满意 ,平均误差 1.37%。本文方法的提出 ,不仅提供了一种预测混合炸药爆速的方法 ,而且对高爆速混合炸药的研究具有一定的指导意义  相似文献   

4.
以3,4-二(氨基呋咱基)氧化呋咱(BAFF)为结构单元设计了一类新型呋咱(氧化呋咱)类炸药分子.运用预测炸药分解产物的BW法则、计算爆速的Rothsteine方法和计算C-J压力的库珀方法等对该类炸药的爆炸参数进行了理论计算,并与HMX等炸药的爆炸参数进行了比较.结果表明,该类炸药的密度大,爆速和爆压介于TATB和HMX之间,是一类新型高能量密度材料化合物.由于该类炸药分子中含呋咱环具有芳香性,预测其分子的稳定性良好.  相似文献   

5.
聚酰胺胺(PAMAM)树形分子用作乳化炸药的稳定剂   总被引:5,自引:1,他引:4  
用PAMAM树形分子作稳定剂制成了一种新型的乳化炸药,并用高低温循环及室温贮存的电导率测试、扫描电镜等技术对其稳定性作了表征.结果表明,用PAMAM稳定后的乳化炸药具有很好的稳定性,对该乳化炸药的爆速测试结果表明,添加PAMAM后的乳化炸药的爆速反而增加.同时,对此乳化炸药的稳定机理作了初步探讨.  相似文献   

6.
一、前言炸药的爆轰速度是衡量炸药性质的重要参数之一,现在对它的精确测量已达到了很高的技术水平,可是如何了解炸药分子结构与爆速值之间的规律,却是当前比较迫切的课题,随着国防现代化的需要,要求能够合成出符合需要性能的新型炸药,为了炸药合成工作的进展及新领域的探索,有必要进行这方面规律性的研究。  相似文献   

7.
铝含量对RDX基含铝炸药爆压和爆速的影响   总被引:4,自引:0,他引:4  
利用锰铜压力传感器和测时仪测量了不同铝含量的RDX基含铝炸药的爆压和爆速。拟合出爆压、爆速与铝含量的关系式,分析了铝含量对RDX基含铝炸药爆压、爆速的影响因素。结果表明,随着铝含量的增加,RDX基含铝炸药的爆压和爆速呈线性减小。计算了铝粉的质量分数在0~40%时所对应的PC-J=A(x)0ρD2中的A(x)值,拟合出A(x)值与铝含量的关系式,得到RDX基含铝炸药爆压与爆速之间的关系式。  相似文献   

8.
根据炸药分子结构的特点,发展了一种直接由分子组成预测炸药圆筒试验壁速的新方法。结果表明,预测值与实验值的一致令人满意,预测精度优于文献方法。  相似文献   

9.
对于全部理想炸药,提出了一种理论最大密度下的爆速和因子F之间的简单经验线性关系,而因子F仅取决於炸药的化学组成和结构。这些炸药包括硝基芳香族化合物、环状和链状硝胺、硝酸酯和脂肪族硝基—硝酸基化合物,以及无氢炸药、无碳炸药和富氢炸药。在估算了爆速的64种炸药中,95%的炸药,其计算值与实测值的偏差在5%以内,98%的炸药在7%以内。唯独硝基甲烷严重地偏离计算爆速(-13%),全部炸药的绝对误差是±2.3%。  相似文献   

10.
对于全部理想炸药,提出了一种理论最大密度下的爆速和因子F之间的简单经验线性关系,而因子F仅取决放炸药的化学组成和结构。这些炸药包括硝基芳香族化合物、环状和链状硝胺、硝酸酯和脂肪族硝基—硝酸基化合物,以及无氢炸药、无碳炸药和富氢炸药。在估算了爆速的64种炸药中,95%的炸药,其计算值与实测值的偏差在5%以内,98%的炸药在7%以内。唯独硝基甲烷严重地偏离计算爆速(-13%),全部炸药的绝对误差是±2.3%。  相似文献   

11.
A simple, empirical linear relationship between detonation velocity at theoretical maximum density and a factor, F, that is dependent solely upon chemical composition and structure is postulated for a gamut of ideal explosives. The explosives ranged from nitroaromatics, cyclic and linear nitramines, nitrate esters and nitro-nitrato aliphatics to zero hydrogen explosives, carbonless explosives and hydrogen rich explosives. Of the 64 explosives evaluated, 95% had calculated detonation velocity values within 5% of experimental and 98% within 7%. Only nitromethan varied grossly (−; 13%) from calculated velocity and the absolute error for all explosives is ±2.3%.  相似文献   

12.
An earlier paper(1) described a simple linear relationship between detonation velocity of 64 ideal C,H,N,O type explosives at their theoretical maximum densities (TMD's) and a factor. F, that is dependent solely upon chemical composition and structure. Based upon available experimental data for nine fluorine-containing explosives, the equation for calculating the factor has been expanded to include compositional terms for fluorinated compounds. In addition, the reliability of the linear relationship has been further tested against seven more recently published C,H,N,O type explosive experimental detonation velocity data points. The calculated detonation velocity values for all 16 explosives lie within 6.0% of experimental with an absolute error of ± 3.0%.  相似文献   

13.
A simple analytic model allows prediction of rate constants and size effect behavior before a hydrocode run, if size effect data exist. It utilizes detonation velocity, average detonation rate, pressure and energy at infinite radius. This allows the derivation of a generalized radius, which becomes larger as the explosive becomes more non‐ideal. The model is applied to near‐ideal PBX 9404, in‐between ANFO and most non‐ideal AN. The power of the pressure declines from 2.3, and 1.5 to 0.8 across this set. The power of the burn fraction, F, is 0.8, 0 and 0, so that an F‐term is important only for the ideal explosives. The size effect shapes change from concave‐down to nearly straight to concave‐up. Failure is associated with ideal explosives when the calculated detonation velocity turns in a double‐valued way. The effect of the power of the pressure may be simulated by including a pressure cut‐off in the detonation rate. The model allows comparison of a wide spectrum of explosives providing that a single detonation rate is feasible.  相似文献   

14.
为了降低爆轰产物及爆轰参数的求解难度,通过对质量守恒方程的基本可行解进行线性组合,得到了爆轰产物的平衡组成,并在此基础上进一步获得了爆轰参数。其主要实现方法为:由最小自由能原理对基本可行解进行筛选,然后根据最大放热原则确定初始解,并在最小自由能原则的引导下,由初始解和基本可行解的线性组合获得爆轰产物的平衡组成,以上操作步骤均由自编程序完成。应用支持向量机(SVM)线性模型对BKW状态方程参数进行了调整,并详细介绍了其主要步骤。使用此方法预测了PETN、CL-20和含铝炸药的爆轰产物及爆轰参数,经参数调整后,发现预测结果与实验值吻合良好;通过与单质炸药爆轰实验数据对比,发现调整BKW状态方程参数时,应当尽可能使用爆轰产物中气体含量相近的含能材料对SVM模型进行训练;若预测含铝炸药,应当使用铝氧比接近待测炸药的样品来训练SVM模型。  相似文献   

15.
A program named “FCALC” has been developed in BASIC language to calculate the detonation volumes (through a factor F) for various explosives as well as for any new organic structure. The number and kind of substiments that need to be incorporated into an unsubstituted organic compound in order to achieve maximum F factor, and thus maximum detonation velocity, can also be predicted. The program calculates F factors for a user-defined set of combinations of substituents.  相似文献   

16.
Detonation characteristics of powerful insensitive explosives   总被引:1,自引:0,他引:1  
Experimental and calculated detonation characteristics of powerful insensitive explosives are given. Features of explosives with a high hydrogen content are discussed. The relationship between the power and sensitivity characteristics of explosives and the structure of their molecules are considered. Prospects for the development of powerful explosives are discussed.  相似文献   

17.
The energy delivered by explosives is described by means of the useful expansion work along the isentrope of the detonation products. A thermodynamic code (W‐DETCOM) is used, in which a partial reaction model has been implemented. In this model, the reacted fraction of the explosive in the detonation state is used as a fitting factor so that the calculated detonation velocity meets the experimental value. Calculations based on such a model have been carried out for a number of commercial explosives of ANFO and emulsion types. The BKW (Becker‐Kistiakowsky‐Wilson) equation of state is used for the detonation gases with the Sandia parameter set (BKWS). The energy delivered in the expansion (useful work) is calculated, and the values obtained are compared with the Gurney energies from cylinder test data at various expansion ratios. The expansion work values obtained are much more realistic than those from an ideal detonation calculation and, in most cases, the values predicted by the calculation are in good agreement with the experimental ones.  相似文献   

18.
The critical detonation diameter of industrial explosive charges is analyzed as a function of their state characteristics (composition, density, and structure) and the presence of a casing. The main reason for the increase in the critical diameter with increasing density of ammonium nitrate explosive charges is the reduction in the energy release rate in the chemical reaction zone of the detonation wave. The effect of the particle size of the components and the amount of the sensitizing component on the critical diameter of powdered and granular explosives fits into the concept of explosive combustion. An analytical formula for the critical detonation diameter of emulsion explosives is obtained which correctly describes experimental data. A possible mechanism of the effect of metal casings on the critical detonation diameter is considered for porous explosives whose detonation velocity is lower than the sound velocity in the casing.  相似文献   

19.
Ammonium-nitrate-fuel-oil (ANFO) explosive, one of the most used mining explosives, exhibits highly non-ideal behaviour. The non-ideality of the detonation is manifested in the strong dependence of the detonation velocity on the charge radius and existence and the characteristics of confinement. This can lead to the detonation velocities as low as one-third of the ideal velocity. The literature reported experimental detonation velocities of cylindrical ANFO charges confined in different confiners (aluminium, copper, steel, polymethyl methacrylate, and polyvinyl chloride) are analysed in this paper. An empirical confinement model, which relates the detonation velocity to the charge radius and the mass of the confiner to the mass of explosive ratio per unit length, is proposed. The model predicts the detonation velocity of unconfined and confined ANFO charges with a mean average percentage error of 8.8 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号