首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 342 毫秒
1.
Turkish White-brined cheese was manufactured using Lactococcus strains (Lactococcus lactis ssp. lactis NCDO763 plus L. lactis ssp. cremoris SK11 and L. lactis ssp. lactis UC317 plus L. lactis ssp. cremoris HP) or without a starter culture, and ripened for 90 d. It was found that the use of starters significantly influenced the physical, chemical, biochemical, and sensory properties of the cheeses. Chemical composition, pH, and sensory properties of cheeses made with starter were not affected by the different starter bacteria. The levels of soluble nitrogen fractions and urea-PAGE of the pH 4.6-insoluble fractions were found to be significantly different at various stages of ripening. Urea-PAGE patterns of the pH 4.6-insoluble fractions of the cheeses showed that considerable degradation of αs1-casein occurred and that β-casein was more resistant to hydrolysis. The use of a starter culture significantly influenced the levels of 12% trichloroacetic acid-soluble nitrogen, 5% phosphotungstic acid-soluble nitrogen, free amino acids, total free fatty acids, and the peptide profiles (reverse phase-HPLC) of 70% (vol/vol) ethanol-soluble and insoluble fractions of the pH 4.6-soluble fraction of the cheeses. The levels of peptides in the cheeses increased during the ripening period. Principal component and hierarchical cluster analyses of electrophoretic and chromatographic results indicated that the cheeses were significantly different in terms of their peptide profiles and they were grouped based on the use and type of starter and stage of ripening. Levels of free amino acid in the cheeses differed; Leu, Glu, Phe, Lys, and Val were the most abundant amino acids. Nitrogen fractions, total free amino acids, total free fatty acids, and the levels of peptides resolved by reverse phase-HPLC increased during ripening. No significant differences were found between the sensory properties of cheeses made using a starter, but the cheese made without starter received lower scores than the cheeses made using a starter. It was found that the cheese made with strains NCDO763 plus SK11 had the best quality during ripening. It was concluded that the use of different starter bacteria caused significant differences in the quality of the cheese, and that each starter culture contributed to proteolysis to a different degree.  相似文献   

2.
Fat-reduced cheeses often suffer from undesirable texture, flavor, and cooking properties. Exopolysaccharides (EPS) produced by starter strains have been proposed as a mechanism to increase yield and to improve the texture and cooking properties of reduced-fat cheeses. The objective of this work was to assess the influence of an exopolysaccharide on the yield, texture, cooking properties, and quality of half-fat Cheddar cheese. Two pilot-scale half-fat Cheddar cheeses were manufactured using single starters of an isogenic strain of Lactococcus lactis ssp. cremoris (DPC6532 and DPC6533) that differed in their ability to produce exopolysaccharide. Consequently, any differences detected between the cheeses were attributed to the presence of the exopolysaccharide. The results indicated that cheeses made with the exopolysaccharide-producing starter had an 8.17% increase in actual cheese yield (per 100 kg of milk), a 9.49% increase in moisture content, increase in water activity and water desorption rate at relative humidities ≤90%, significant differences in the cheeses microstructure, and a significant improvement in both textural and cooking properties, without negatively affecting the flavor profiles of the cheeses.  相似文献   

3.
This study characterised exopolysaccharide-producing lactic acid bacteria and examined their potential for use in Cheddar cheese manufacture. Two strains were chosen for incorporation as adjunct cultures in Cheddar cheese manufacture: namely, the homopolysaccharide-producers Weissella cibaria MG1 and Lactobacillus reuteri cc2. These strains both produce dextrans with molecular masses ranging from 105 to 107 Da. Both strains were used in the production of miniature Cheddar cheeses that employed a conventional commercial cheese starter culture Lactococcus lactis R604. A cheese was also included that used purified dextran as an ingredient. The W. cibaria strain survived in cheese with levels increasing by 1.5 log cycles over the ripening period. All experimental cheeses (adjunct or exopolysaccharide ingredient) had higher moisture levels compared with the control cheese made using starter alone. Inclusion of the adjunct strains had no detectable negative effects on cheeses in terms of proteolysis.  相似文献   

4.
A detailed investigation was undertaken to determine the effects of four single starter strains, Lactococcus lactis subsp. lactis 303, Lc. lactis subsp. cremoris HP, Lc. lactis subsp. cremoris AM2, and Lactobacillus helveticus DPC4571 on the proteolytic, lipolytic and sensory characteristics of Cheddar cheese. Cheeses produced using the highly autolytic starters 4571 and AM2 positively impacted on flavour development, whereas cheeses produced from the poorly autolytic starters 303 and HP developed off-flavours. Starter selection impacted significantly on the proteolytic and sensory characteristics of the resulting Cheddar cheeses. It appeared that the autolytic and/or lipolytic properties of starter strains also influenced lipolysis, however lipolysis appeared to be limited due to a possible lack of availability or access to suitable milk fat substrates over ripening. The impact of lipolysis on the sensory characteristics of Cheddar cheese was unclear, possibly due to minimal differences in the extent of lipolysis between the cheeses at the end of ripening. As anticipated seasonal milk supply influenced both proteolysis and lipolysis in Cheddar cheese. The contribution of non-starter lactic acid bacteria towards proteolysis and lipolysis over the first 8 months of Cheddar cheese ripening was negligible.  相似文献   

5.
Four different types of mould‐ripened Civil cheese were manufactured. A defined (nontoxigenic) strain of a Penicillium roqueforti (SC 509) was used as the secondary starter with and without addition of the whey cheese (Lor); in parallel, secondary starter‐free counterparts were manufactured. Chemical composition, microbiology and proteolysis were studied during the ripening. The incorporation of whey cheese in the manufacture of mould‐ripened Civil cheese altered the gross composition and adversely affected proteolysis in the cheeses. The inoculated P. roqueforti moulds appeared to grow slowly on those cheeses, and little proteolysis was evident in all cheese treatments during the first 90 days of ripening. However, sharp increases in the soluble nitrogen fractions were observed in all cheeses after 90 days. Microbiological analysis showed that the microbial counts in the cheeses were at high levels at the beginning of ripening, while their counts decreased approximately 1–2 log cfu/g towards the end of ripening.  相似文献   

6.
《International Dairy Journal》2003,13(2-3):169-178
Different authors have demonstrated the potential of adding lactobacilli as adjunct cultures to pasteurized milk used in cheese manufacture. The aim of this work was to observe the effect of the use of a defined-strain starter culture and the addition of an adjunct culture (Lactobacillus plantarum) to cheesemilk in order to determine their effect on the ripening of Manchego cheese. Manchego cheeses were manufactured using one of the following starter culture systems: a defined starter consisting of Lactococcus lactis ssp. lactis and Leuconostoc mesenteroides ssp. dextranicum; a defined starter, as described above, and Lb. plantarum, which were isolated from a good quality Manchego cheese made from raw milk, or a commercial starter comprised of two strains of Lc. lactis. The cheeses were sampled at 15, 45, 90 and 150 d of ripening. Principal component analysis of peak heights of reversed-phase HPLC chromatograms of 70% (v/v) ethanol-insoluble and -soluble fractions distributed the samples according to the starter used in their manufacture. Quantitative differences in several peptides were evident between the three cheeses. Cheeses made with the defined-strain starters received higher scores for the flavour quality and intensity and for overall impression than the cheeses made with the commercial starter.  相似文献   

7.
The objective of this study was to evaluate the effect of capsular and ropy exopolysaccharide (EPS)-producing strains of Lactococcus lactis ssp. cremoris on textural and microstructural attributes during ripening of 50%-reduced-fat Cheddar cheese. Cheeses were manufactured with added capsule- or ropy-forming strains individually or in combination. For comparison, reduced-fat cheese with or without lecithin added at 0.2% (wt/vol) to cheese milk and full-fat cheeses were made using EPS-nonproducing starter, and all cheeses were ripened at 7°C for 6 mo. Exopolysaccharide-producing strains increased cheese moisture retention by 3.6 to 4.8% and cheese yield by 0.28 to 1.19 kg/100 kg compared with control cheese, whereas lecithin-containing cheese retained 1.4% higher moisture and had 0.37 kg/100 kg higher yield over the control cheese. Texture profile analyses for 0-d-old cheeses revealed that cheeses with EPS-producing strains had less firm, springy, and cohesive texture but were more brittle than control cheeses. However, these effects became less pronounced after 6 mo of ripening. Using transmission electron microscopy, fresh and aged cheeses with added EPS-producing strains showed a less compact protein matrix through which larger whey pockets were dispersed compared with control cheese. The numerical analysis of transmission electron microscopy images showed that the area in the cheese matrix occupied by protein was smaller in cheeses with added EPS-producing strains than in control cheese. On the other hand, lecithin had little impact on both cheese texture and microstructure; after 6 mo, cheese containing lecithin showed a texture profile very close to that of control reduced-fat cheese. The protein-occupied area in the cheese matrix did not appear to be significantly affected by lecithin addition. Exopolysaccharide-producing strains could contribute to the modification of cheese texture and microstructure and thus modify the functional properties of reduced-fat Cheddar cheese.  相似文献   

8.
To overcome the seasonal shortage of goat milk in mixed milk cheese manufacture, pasteurized goat milk curd and high-pressure-treated raw goat milk curd manufactured in the spring were held at −24°C for 4 mo, thawed, and mixed with fresh cow milk curd for the manufacture of experimental cheeses. Control cheeses were made from a mixture of pasteurized cow and goat milk. The microbiota of experimental and control cheeses was studied using culture-dependent and culture-independent techniques. Bacterial enumeration by classical methods showed lactic acid bacteria to be the dominant population in both control and experimental cheeses. In total, 681 isolates were grouped by partial amplified rDNA restriction analysis (ARDRA) into 4 groups and identified by 16S rRNA gene sequencing as Lactococcus lactis ssp. lactis (563 isolates), Leuconostoc pseudomesenteroides (72 isolates), Lactobacillus spp. (34 isolates), and Lc. lactis ssp. cremoris (12 isolates). Temporal temperature gradient gel electrophoresis (TTGE) analysis of cheese showed (1) the predominance of Lc. lactis in all cheeses; (2) the presence of Leu. pseudomesenteroides population in all cheeses from d 15 onward; (3) the presence of a Lactobacillus plantarum population in control cheese until d 15 and in experimental cheeses throughout the ripening period. Due to the most diverse and complete set of peptidases present in the genus Lactobacillus, the prevalence of this population in experimental cheeses could give rise to differences in cheese flavor between experimental and control cheeses.  相似文献   

9.
Old-style cheese starters were evaluated to determine their ability to produce cheese aroma compounds. Detailed analyses of the aroma-producing potential of 13 old-style starter cultures were undertaken. The proteolytic profile of the starters was established by an accelerated ripening study using a model cheese slurry and compared with those of a commercial aromatic starter and commercial Cheddar cheeses. To evaluate the aromatic potential of the starter cultures, quantification of free amino acids liberated and volatile compounds after 15 d of ripening at 30°C as well as sensory analysis were carried out. Results showed that proteolysis patterns of all 13 starter cultures in the curd model were comparable to those of commercial Cheddar cheeses. All tested cultures demonstrated the ability to produce high amounts of amino acids recognized as precursors of aroma compounds. Several differences were observed between the starters and commercial Cheddar cheeses regarding some amino acids such as glutamate, leucine, phenylalanine, proline, and ornithine, reflecting the various enzymatic systems present in the starters. Starters Bt (control) and ULAAC-E exhibited various significant differences regarding their free amino acid profiles, as confirmed by sensory analysis. In addition, identification of volatile compounds confirmed the presence of several key molecules related to aroma, such as 3-methylbutanal and diacetyl. Besides the aroma-producing aspect, 2 starters (ULAAC-A and ULAAC-H) seem to possess an important ability to generate large amounts of γ-aminobutyric acid, which contributed up to 15% of the total amino acids present in the model curd after 15 d ripening. γ-Aminobutyric acid is an amine well-known for its antihypertensive and calming effects.  相似文献   

10.
11.
12.
The aim of this study was to determine and compare the microbiological, biochemical and sensory characteristics of herby cheese made with two different methods. In the first method (M1), milk and herbs were pasteurized at 65°C for 30 min, and Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris were added as starter culture at an inoculum ratio of 1.5%. In the second method (M2), the conventional cheesemaking was applied. Microbiological and biochemical changes were monitored throughout the ripening period of 90 days. Samples were taken from cheeses on days 1, 15, 30, 60, and 90. At the end of ripening, sensory characteristics of cheeses manufactured with both methods were evaluated. The obtained results suggested that most changes in pH, titratable acidity, and dry matter contents of cheese varieties were not found to differ statistically significant, but the difference in salt content was significant (P < 0.01). Total aerobic count, lactic acid bacteria, Staphylococcus aureus, coliforms, moulds, yeasts, proteolytic and lipolytic microorganism counts were lower in M1 cheese samples than those of M2 cheese samples (P < 0.01). The numbers of psychrotrophic microorganism in both cheese types were not found to differ significantly. Moreover, the results suggested that there were significant differences (P < 0.01) in the degrees of proteolysis and lipolysis of the cheese varieties. High proteolysis and lipolysis rates were monitored in the traditional cheese samples. However, there were no significant differences between the sensory characteristics of cheese samples.  相似文献   

13.
Proteolysis during ripening of reduced fat Cheddar cheeses made with different exopolysaccharide (EPS)-producing and nonproducing cultures was studied. A ropy strain of Lactococcus lactis ssp. cremoris (JFR1) and capsule-forming nonropy and moderately ropy strains of Streptococcus thermophilus were used in making reduced-fat Cheddar cheese. Commercial Cheddar starter was used in making full-fat cheese. Results showed that the actual yield of cheese made with JFR1 was higher than that of all other reduced-fat cheeses. Cheese made with JFR1 contained higher moisture, moisture in the nonfat substance, and residual coagulant activity than all other reduced-fat cheeses. Proteolysis, as determined by PAGE and the level of water-soluble nitrogen, was also higher in cheese made with JFR1 than in all other cheeses. The HPLC analysis showed a significant increase in hydrophobic peptides (causing bitterness) during storage of cheese made with JFR1. Cheese made with the capsule-forming nonropy adjunct of S. thermophilus, which contained lower moisture and moisture in the nonfat substance levels and lower chymosin activity than did cheese made with JFR1, accumulated less hydrophobic peptides. In conclusion, some EPS-producing cultures produced reduced-fat Cheddar cheese with moisture in the nonfat substance similar to that in its full-fat counterpart without the need for modifying the standard cheese-making protocol. Such cultures might accumulate hydrophobic (bitter) peptides if they do not contain the system able to hydrolyze them. For making high quality reduced-fat Cheddar cheese, EPS-producing cultures should be used in conjunction with debittering strains.  相似文献   

14.
Cheese ripening acceleration is of continuous interest for the industry. High-pressure (HP) treatment of starter cultures used in cheese-manufacturing offers the potential to accelerate ripening by increasing the activity of their intracellular peptidases that contribute in the development of desired cheese organoleptic characteristics.The objective of the present research was the investigation of the effect of HP treatment (200 MPa-20 °C - 20 min) directly on white brined cheese or on the starter culture used for its manufacture (Str. thermophilus:L. lactis:L. bugaricus 2:1:1). For this purpose, the microbial, textural, physicochemical and organoleptic characteristics and proteolysis were assessed during the 2nd stage of ripening in cold stores. Control cheese without any treatment was also studied.Cheeses made with HP-treated starters had increased secondary proteolysis. Organoleptic scoring of these cheeses was higher during the whole storage period compared to control and HP-treated cheese. Their superiority was evident even at the early stages of ripening in cold stores, since no bitterness was detected. On the contrary, although HP treated cheeses showed the highest increase in aminopeptidases activities, this was not correlated with the studied ripening indices or the organoleptic characteristics.According to the results, HP-treated starter culture can accelerate proteolysis and potentially the ripening of cheese-in-brine.Industrial relevanceThe data obtained from this work suggest that application of HP treatment under optimized conditions on cheeses in brine starter cultures or on whole cheeses can be effectively used for the production of products with reduced ripening time. This is of great importance for the cheese industries, since the storage period for ripening is long (higher than two months), while applying HP treatment as suggested in this study, this time may be reduced to less than one month, producing cheeses of superior quality.  相似文献   

15.
In this study, 2 different starter culture combinations were prepared for cheesemaking. Starter culture combinations were formed from 8 strains of lactic acid bacteria. They were identified as Lactococcus lactis ssp. lactis (2 strains), Lactobacillus plantarum (5 strains), and Lactobacillus paraplantarum (1 strain) by amplified fragment length polymorphism analysis. The effects of these combinations on the physicochemical and microbiological properties of Beyaz cheeses were investigated. These cheeses were compared with Beyaz cheeses that were produced with a commercial starter culture containing Lc. lactis ssp. lactis and Lc. lactis ssp. cremoris as control. All cheeses were ripened in brine at 4°C for 90 d. Dry matter, fat in dry matter, titratable acidity, pH, salt in dry matter, total N, water-soluble N, and ripening index were determined. Sodium dodecyl sulfate-PAGE patterns of cheeses showed that αS-casein and β-casein degraded slightly during the ripening period. Lactic acid bacteria, total mesophilic aerobic bacteria, yeast, molds, and coliforms were also counted. All analyses were repeated twice during d 7, 30, 60, and 90. The starter culture combinations were found to be significantly different from the control group in pH, salt content, and lactobacilli, lactococci, and total mesophilic aerobic bacteria counts, whereas the cheeses were similar in fat, dry matter content, and coliform, yeast, and mold counts. The sensory analysis of cheeses indicated that textural properties of control cheeses presented somewhat lower scores than those of the test groups. The panelists preferred the tastes of treatment cheeses, whereas cheeses with starter culture combinations and control cheeses had similar scores for appearance and flavor. These results indicated that both starter culture combinations are suitable for Beyaz cheese production.  相似文献   

16.
The objective of the study was to determine the effects of exopolysaccharide (EPS)‐producing or non‐EPS‐producing starters on proteolysis, physical and microstructural characteristics of full‐fat or low‐fat Tulum cheeses during ripening. For this purpose, Tulum cheese was manufactured using full‐ or low‐fat milk with EPS‐producing and non‐EPS‐producing starter cultures. Chemical composition, proteolysis, texture profiles and microstructure of the cheeses were studied during 90 days of ripening. Urea‐PAGE of water‐insoluble and RP‐HPLC peptide profiles of water‐soluble fractions of the cheeses showed that the use of starters resulted in different degradation patterns in all cheeses during ripening. Although β‐casein exhibited similar degradation patterns in all cheeses, small differences are present in αs1‐casein degradation during ripening. Reducing fat in Tulum cheese changed the RP‐HPLC peptide profile of the cheeses. The use of EPS‐producing cultures improved the textural characteristics and changed the microstructure and proteolysis of low‐fat Tulum cheese.  相似文献   

17.
Gouda cheese was manufactured with Lactococcus lactis ssp. lactis IMAU60010, L. lactis ssp. cremoris IMAU40136 and L. helveticus ND01 isolated from the naturally fermented milk in China. Starter cultures added with L. helveticus ND01 produced Gouda cheese with dramatically more proteolysis than control cheeses. Compared with control cheese, experimental cheese with L. helveticus ND01 adjunct revealed dramatic increase in both Angiotensin I‐converting enzyme (ACE)‐inhibitory activity and γ‐aminobutyric acid content. The ACE‐inhibitory activity of Gouda cheeses with the addition of 1 × 105 CFU/mL L. helveticus ND01 increases from 53.7 to 83.1% at 6 weeks of ripening.  相似文献   

18.
Abstract: The purpose of this study was to manufacture new functional low‐fat cheeses using Taiwanese ropy fermented milk (TRFM) and Lactococcus lactis subsp. cremoris strains isolated from TRFM. After 28 d of ripening and storage, the viable populations of lactic acid bacteria (LAB) in the low‐fat cheeses made with L. lactis subsp. cremoris TL1 (TL1), L. lactis subsp. cremoris TL4 (TL4), and TRFM still maintained above 108 CFU/g. The low‐fat cheeses made with TL1 and TRFM showed higher moisture contents than the cheeses made with TL4, full‐fat, and low‐fat cheese controls. The low‐fat cheeses made with TL1 and TL4 had higher customer preferential scores similar to full‐fat cheese control in the sensory evaluation. Additionally, the low‐fat cheeses fermented with TL1, TL4, and TRFM for 4 h had higher 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) free radical‐scavenging and ferrous ion‐chelating abilities than the cheeses fermented with the starters for 8 h, full‐fat, and low‐fat cheese controls. A better angiotensin‐converting enzyme (ACE) inhibition activity was also observed in the low‐fat cheeses made with TL1, TL4, and TRFM than that in the full‐fat and low‐fat cheese controls during ripening and storage period. Practical Application: As health‐conscious consumers continue to seek low‐fat alternatives in their diets, there remain strong interests for the dairy industry to develop low‐fat cheeses to meet the demands. This study clearly demonstrated that the low‐fat cheeses fermented with TL1 for 4 h showed a better overall acceptability and possessed antioxidative abilities and ACE inhibitory activities than other cheeses tested in this study. By improving its flavor and investigating the possible mechanisms of its functionalities in the future, this low‐fat cheese might possibly be commercialized and give a positive impact on cheese consumption in the future.  相似文献   

19.
Sodium chloride (NaCl) in cheese contributes to flavor and texture directly and by its effect on microbial and enzymatic activity. The salt-to-moisture ratio (S/M) is used to gauge if conditions for producing good-quality cheese have been met. Reductions in salt that deviate from the ideal S/M range could result in changing culture acidification profiles during cheese making. Lactococcus lactis ssp. lactis or Lc. lactis ssp. cremoris are both used as cultures in Cheddar cheese manufacture, but Lc. lactis ssp. lactis has a higher salt and pH tolerance than Lc. lactis ssp. cremoris. Both salt and pH are used to control growth and survival of Listeria monocytogenes and salts such as KCl are commonly used to replace the effects of NaCl in food when NaCl is reduced. The objectives of this project were to determine the effects of sodium reduction, KCl use, and the subspecies of Lc. lactis used on L. monocytogenes survival in stirred-curd Cheddar cheese. Cheese was manufactured with either Lc. lactis ssp. lactis or Lc. lactis ssp. cremoris. At the salting step, curd was divided and salted with a concentration targeted to produce a final cheese with 600 mg of sodium/100 g (control), 25% reduced sodium (450 mg of sodium/100 g; both with and without KCl), and low sodium (53% sodium reduction or 280 mg of sodium/100 g; both with and without KCl). Potassium chloride was added on a molar equivalent to the NaCl it replaced to maintain an equivalent S/M. Cheese was inoculated with a 5-strain cocktail of L. monocytogenes at different times during aging to simulate postprocessing contamination, and counts were monitored over 27 or 50 d, depending on incubation temperature (12 or 5°C, respectively). In cheese inoculated with 4 log10 cfu of L. monocytogenes/g 2 wk after manufacture, viable counts declined by more than 3 log10 cfu/g in all treatments over 60 d. When inoculated with 5 log10 cfu/g at 3 mo of cheese age, L. monocytogenes counts in Cheddar cheese were also reduced during storage, but by less than 1.5 log10 cfu/g after 50 d. However, cheese with a 50% reduction in sodium without KCl had higher counts than full-sodium cheese at the end of 50 d of incubation at 4°C when inoculated at 3 mo. When inoculated at 8 mo postmanufacture, this trend was only observed in 50% reduced sodium with KCl, for cheese manufactured with both cultures. This enhanced survival for 50% reduced-sodium cheese was not seen when a higher incubation temperature (12°C) was used when cheese was inoculated at 3 mo of age and monitored for 27 d (no difference in treatments was observed at this incubation temperature). In the event of postprocessing contamination during later stages of ripening, L. monocytogenes was capable of survival in Cheddar cheese regardless of which culture was used, whether or not sodium had been reduced by as much as 50% from standard concentrations, or if KCl had been added to maintain the effective S/M of full-sodium Cheddar cheese.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号