首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
粒子群优化算法求解多模式项目再调度问题   总被引:3,自引:1,他引:2  
针对有资源约束的项目调度问题中,项目执行环境发生变更时的项目再调度问题,分析了项目执行环境变更的情况和项目再调度变更费用的构成,建立了以再调度变更费用为优化目标的多模式项目再调度模型并应用基于粒子群优化算法进行求解.在该算法中,粒子分为优先级粒子和模式粒子,实现对活动优先顺序和模式的优化.部分初始优先级粒子位置矢量通过启发式规则产生,以提高解的质量.通过仿真计算分析了关键参数的选择,并与其他启发式算法进行了比较.仿真结果表明,该算法能有效地求解多模式项目的再调度问题,在实际工程中有一定应用价值.  相似文献   

2.
针对车间调度问题的特点构造了此问题的粒子表达方法,给出了具体的算法应用过程,并将结果与神经网络方法、遗传算法、改进的加工效率函数的调度算法做了对比.结果表明粒子群算法在柔性工作车间调度问题的应用上是十分有效的.  相似文献   

3.
面向制造企业多项目管理中的资源优化配置问题,以资源作为决策变量展开研究,以整体工期优化为目标建立了资源优化模型,设计了一种用于求解可更新资源约束的资源优化配置问题的离散粒子群算法.新算法重新定义了基本粒子群算法中的速度、位置公式,使其适宜求解资源优化调度类离散问题,加快收敛速度,获得整体最优配置方案.应用研究表明本算法...  相似文献   

4.
一种自适应粒子群算法求解模糊作业车间调度问题   总被引:1,自引:0,他引:1  
针对模糊加工时间和模糊交货期的车间调度问题,提出自适应离散粒子群算法。鉴于粒子群在搜索后期易早熟的缺点,根据群体聚集程度自适应地更改交叉概率、线性更改变异概率;在搜索后期,依概率进行择优操作,对局部极值进行基于工序块的变异操作,使算法具有更优的性能。仿真实验表明该算法可行有效。  相似文献   

5.
基于量子粒子群算法的制造网格资源调度问题研究   总被引:1,自引:0,他引:1  
对制造网格资源调度问题进行研究,提出了一种收敛速度快、全局性能好、不易陷入局部最优的智能迭代算法一量子粒子群算法来实现对该问题的求解。该算法采用整数编码方式,将网格资源调度问题转化成准连续优化问题,并采用加权目标组合的方式处理多目标条件。最后通过具体实例,对该算法进行了仿真验证,结果表明,在求解制造网格资源调度这类NP—Hard问题时,量子粒子群算法能获得比遗传算法更优的求解效果。  相似文献   

6.
针对工程优化设计问题,提出了基于混沌粒子群算法的工程约束优化问题求解方法.CPSO算法利用混沌搜索的全局遍历性、随机性和规律性等特点,引导粒子在全局范围内搜索,从而克服了传统粒子群算法早熟收敛的缺点.该算法以种群适应度方差作为粒子群优化算法早熟收敛的判据,并用惩罚函数法处理违法约束的粒子,当基本粒子群算法陷入早熟时,随机选择粒子群中的部分粒子实施混沌搜索,直至满足迭代收敛条件为止.CPSO算法能提高种群的多样性和粒子搜索的遍历性,从而有效提高了PSO算法的收敛速度和精度.两个工程约束优化实例的求解结果表明,该算法的优化结果最好,收敛速度也比较快.  相似文献   

7.
采用粒子群算法优化并行机调度问题,提出了基于机器和粒子位置取整的粒子编码方法和基于工件和粒子位置次序的粒子编码方法,并给出了两种不同粒子编码方法所对应的粒子群算法的步骤.通过对两个并行机算例的计算说明,基于两种不同编码方法的粒子群算法都能有效地对并行机调度问题进行优化,其中,基于工件和粒子位置次序的粒子编码所对应粒子群算法的优化性能要好些.  相似文献   

8.
针对大规模车间调度问题,提出了一种混沌压缩非线性粒子群算法。首先运用多种群策略增加粒子多样性,结合混沌策略和非线性策略改进惯性权重,以平衡全局和局部搜索能力,加快算法后期收敛速度;再引入压缩因子改进算法速度更新公式,加大算法前期搜索范围,以防止算法陷入局部最优;最后用6种车间作业经典算例分别对粒子群算法、遗传算法、灰狼算法和混沌压缩非线性粒子群算法进行检验。实验结果表明,该方法可以显著提升粒子群算法的收敛精度和速度,对于实际大规模车间调度问题适应性较好,能有效提高车间的生产效率。  相似文献   

9.
针对单级多资源约束生产批量计划问题,提出了基于量子粒子群算法求解该问题的方法。此算法将量子强大的领域搜索能力和基本粒子群算法(PSO)通过跟踪极值更新粒子的功能结合,能够改善粒子群算法后期搜索速度慢的问题。通过对其他文献的实例进行计算与比较,结果表明,在求解单级多资源约束生产批量计划问题时,量子粒子群算法(QP-SO)要优于退火惩罚混合遗传算法和传统的遗传算法。  相似文献   

10.
求解作业车间调度问题的广义粒子群优化算法   总被引:14,自引:0,他引:14  
为克服传统粒子群优化算法在解决组合优化问题上的局限性,分析了其优化机理,并在此基础上提出了广义粒子群优化模型。按照此模型提出了一种求解作业车间调度问题的广义粒子群优化算法。在本算法中,利用遗传算法中的交叉操作作为粒子间的信息交换策略,利用遗传算法中的变异操作作为粒子的随机搜索策略,而粒子的局部搜索策略则采用禁忌搜索来实现。为了控制粒子的局部搜索以及向全局最优解的收敛,迭代过程中交叉概率以及禁忌搜索的最大步长都是动态变化的。实验结果表明,本算法可有效地求解作业车间调度问题,验证了广义粒子群优化模型的合理性。  相似文献   

11.
基于粒子群算法的并行多机调度问题研究   总被引:11,自引:0,他引:11  
将港口拖轮作业调度问题描述为一类带特殊工艺约束的并行多机调度问题,采用粒子群算法求解该类调度问题,提出了一种2维粒子表示方法,通过对粒子位置向量进行排序生成有效调度,并采用粒子位置向量多次交换的局部搜索方法来提高算法的搜索效率。最后,通过计算验证了混合粒子群算法的有效性。  相似文献   

12.
针对以最小化完工时间为目标的阻塞流水车间调度问题,提出了一种混合粒子群算法进行求解。该算法将粒子群算法与迭代贪婪算法进行了结合。利用改进的迭代贪婪算法产生问题初始优化解,利用粒子群算法进行全局优化。针对粒子群算法易早熟收敛的特点,提出一种判断粒子停滞和粒子群早熟的方法,并在发现种群早熟后利用迭代贪婪算法的构造操作和毁坏操作对相关粒子进行变异,同时按照一定比例对最差的部分粒子进行重新初始化,以增加种群多样性。通过标准实例测试,验证了所提算法的有效性。  相似文献   

13.
针对模糊交货期的流水车间调度问题的特点,提出采用知识进化算法和粒子群优化的混合算法来求解问题。该算法首先在多个群体空间内采用粒子群优化寻找局部最优解,然后利用知识进化算法的猜测操作和反驳操作建立以群体空间知识为基础的一个知识空间,最后通过知识空间的协同进化更新其中的社会知识,从而形成问题的最优解。通过采用所提算法对带模糊交货期的流水车间调度问题的实例进行测试,并比对遗传算法和粒子群优化算法,表明了混合算法的可行性和有效性。  相似文献   

14.
针对并行网格任务的资源分配问题,提出了一种基于并行粒子子群优化的分配算法.该算法引入效用函数,反映网格任务的偏好和目标,利用乘子法转化约束条件,导出适应度函数.最后通过粒子子群的并行寻优过程,得到资源分配的最优解.仿真实验表明了该算法的有效性,且在任务较多的情况下,优化结果好于传统粒子群算法.  相似文献   

15.
基于改进粒子群算法的生产批量计划问题研究   总被引:12,自引:0,他引:12  
为求解基于成组单元有能力约束的生产批量计划问题,提出了一种基于二进制粒子群算法和免疫记忆机制相结合的方法,并阐明了该方法的具体实现过程。在该方法中,采用罚函数法处理约束条件,每个粒子都代表一组可用于描述具体批量计划方案的规则组合。通过对其他文献中一个仿真实例的计算和结果比较,表明该算法在寻优能力、求解速度和稳定性等方面都明显优于文献中的遗传算法。  相似文献   

16.
基于PSO的车间柔性调度计算   总被引:1,自引:0,他引:1  
在不确定车间信息环境下的调度策略问题中,提出多目标车间柔性调度的规划模型,并应用粒子群算法进行求解,给出具体的算法应用过程.实验结果验证该模型和算法的有效性及实用性.  相似文献   

17.
解决无等待流水车间调度问题的离散粒子群优化算法   总被引:1,自引:0,他引:1  
针对以生产周期为目标的无等待流水车间调度问题,提出了一种离散粒子群优化算法.研究了无等待流水车间调度问题的快速邻域搜索技术,并将其分别用于加强粒子、个体极值或全体极值的邻域探索能力,得到了三种改进的离散粒子群优化算法.基于典型算例的试验,表明了上述算法的有效性.  相似文献   

18.
基于粒子群优化和变邻域搜索的混合调度算法   总被引:5,自引:1,他引:5  
提出了用于解决作业车间调度问题的离散版粒子群算法.该算法采用基于工序的编码和新的位置更新策略,使具有连续本质的粒子群算法直接适用于调度问题.同时,针对粒子群算法容易陷入局部最优的缺陷,利用粒子群算法和变邻域搜索算法的互补性能,设计了粒子群-变邻域搜索算法、改进的粒子群算法、粒子群-变邻域搜索交替算法和粒子群-变邻域搜索协同算法4种混合调度算法.仿真结果表明,混合算法能够有效地、高质量地解决作业车间调度问题.  相似文献   

19.
半导体炉管区批调度问题的粒子群优化算法研究   总被引:5,自引:0,他引:5  
为改善粒子群算法对大规模问题求解的性能,提出了一种基于文化进化的并行粒子群算法,详细阐述了该算法的原理和具体实施方案.针对半导体炉管区批调度问题,设计了双层粒子群算法,外层应用基于文化进化的并行粒子群算法进行批量计划问题的求解,内层采用传统的粒子群算法求解调度问题.通过对其他文献中的仿真实例进行计算和结果比较表明,该算法优于文献中的启发式算法和蚂蚁算法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号