首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu W  Li X  Zhu C 《Ultramicroscopy》2007,107(9):833-837
Aging of the field emission performance of the printed carbon nanotubes (CNTs) cathode is studied. A continuous increase of the field emission current as well as the density of field emission sites under a constant voltage is observed. It is revealed that the resistant heating may play an important role in the activation of the potential emitters during the aging process. A technique of activating the printed CNT cathode with an aging process is suggested. F-N curves before and after the aging processes are analyzed and it is revealed that the effective emission area increases during the aging process.  相似文献   

2.
A carbon nanotube (CNT) composite cold cathode was studied for field emission display application. The CNT composite cold cathode was composed of CNTs and silicon dioxide binder. Field emission from CNT composite cold cathode with different CNT contents was studied. It was found that with increase in CNT contents, the threshold field decreased. The conductance of the composite cathode was measured and with increasing CNT content, there was a critical CNT content where the conductance increased several orders of magnitude. Plasma etching using SF6 as the etchant was adopted to treat the cathode. Improvement in emission uniformity was achieved. It was also found that after post-treatment the threshold field of the cathode decreased. The morphology of the etched cathode was analyzed and the improvement of uniformity and lowering of the threshold field was attributed to the exposure of CNTs after etching.  相似文献   

3.
The field emission properties of the screen-printed carbon nanotube (CNT) composite cathode have close relationship with its microstructure. In this study, carbon nanotube composite cold cathode with ZnO nano-particles as binding material was prepared using screen-printing method. Electric field cycles were used to post-treat the carbon nanotube composite cold cathode. During the process of electric field cycle treatment, obvious heat-induced damages were observed from the cathode. Scanning electron microscope and transmission electron microscope were employed to analyze the morphology and microstructure of the cathode. The possible mechanisms responsible for damages were discussed.  相似文献   

4.
J. Tan  T. Yu  B. Xu  Q. Yao 《Tribology Letters》2006,21(2):107-111
This paper investigates the microstructure and wear resistance of nickel–carbon nanotube (CNT) composite coating deposited by brush plating technique. The Ni/CNT coating deposited with a pulse current source has less porosity, higher hardness and higher wear resistance than that with a DC source. CNTs greatly improve the coating performance. The wear mechanism is mainly the smearing of the Ni/CNTs coatings, instead of the fracture for the Ni coatings.  相似文献   

5.
Polymeric carbon nanotube (CNT) nanocomposites have unique mechanical, electrical, and thermal properties. Anisotropy can be induced depending on the alignment of the CNT fillers within polymeric composites, which is known to affect material properties. In order to investigate the effects of CNT alignments in micromechanical scribing using a single crystal diamond tool, a microindenter–scriber system was developed. Multiwalled carbon nanotube–polystyrene (MWCNT–PS) samples with varying CNT concentrations were prepared through a microinjection molding process, where the injection enables the partial alignment of CNTs in the flow direction through high shear stress. A mechanistic scribing force model was proposed based on the material properties that could be obtained using the microindentation techniques. Scribing experiments were performed in the parallel and perpendicular directions to the CNT alignment. Forces in three axes were measured and analyzed to identify three unknown parameters—the shearing, plowing, and adhesion friction coefficients. The resulting coefficients for scribing perpendicular to the CNT alignment showed distinguishable trends from scribing parallel to the CNT alignment as the CNT loadings increased. Their linear trends in relation to the material properties identified from indentation techniques can be used to predict microscribing parameters and resulting cutting forces, in combination with the proposed mechanistic model.  相似文献   

6.
Effect of Carbon Nanotube Addition on Tribological Behavior of UHMWPE   总被引:2,自引:0,他引:2  
Carbon nanotubes (CNTs) were added to Ultra-high molecular weight polyethylene (UHMWPE) to improve the tribological properties of UHMWPE. CNTs which have a diameter of about 10–50 nm, while their length is about 3–5 nm were produced by the catalytic decomposition of acetylene gas using a tube furnace. Ball-on-disc-type wear tests were performed to evaluate the tribological performance of UHMWPE composites reinforced with CNTs. The results showed that addition of carbon nanotube up to 0.5 wt% lowered wear loss significantly and increased friction coefficient slightly. Also through the scanning electron microscope (SEM), the surfaces of UHMWPE were observed and analyzed to discuss the tribological behavior of CNT added UHMWPE.  相似文献   

7.
Friction and wear behavior of electroless Ni-based CNT composite coatings   总被引:1,自引:0,他引:1  
Ni-based carbon nanotube (CNT) composite coatings with different volume fraction (from 5 to 12 vol.%) of CNTs were deposited on medium carbon steel substrates by electroless plating. The friction and wear behavior of the composite coatings were investigated using a pin-on-disk wear tester under unlubricated condition. Friction and wear tests were conducted at a sliding speed of 0.0623 m s−1 and at an applied load of 20 N. The experimental results indicated that the friction coefficient of the composite coatings decreased with increasing the volume fraction of CNTs due to self-lubrication and unique topological structure of CNTs. Within the range of volume fraction of CNTs from 0 to 11.2%, the wear rate of the composite coatings showed a steadily decreasing trend with increasing volume fraction of CNTs. Because of the conglomeration of CNTs in the matrix, however, the wear rate of the composite coatings increased with further increasing the volume fraction of CNTs.  相似文献   

8.
Tribological properties of carbon nanotube-doped carbon/carbon composites   总被引:3,自引:0,他引:3  
Carbon nanotube (CNT)-doped carbon/carbon (C/C) composites were fabricated by the chemical vapor infiltration (CVI) method to investigate the effect of CNTs on tribological properties of C/C composites. CNTs, which had been synthesized by catalytic pyrolysis of hydrocarbons, were added to carbon fiber formed preforms before CVI process. Ring-on-block-type wear tests were performed to evaluate the frictional properties of CNT-doped C/C composites. Results show that CNTs can not only increase wear resistance of C/C composites but also maintain stable friction coefficients under different loads. Polarized light microscopy, X-ray diffraction, scanning electron microscopy and Raman spectroscopy analyses demonstrate that favorable effects of CNTs on tribological properties of C/C composites have been achieved indirectly by altering microstructure of pyrocarbons and directly by serving as high-strength lubricative frictional media at the same time. Electron dispersive spectroscopy (EDS) analyses verify the existence of adhesive wear mechanism in both pure C/C composites and CNT-doped C/C composites albeit the two-body abrasive mechanism dominates in pure C/C composites.  相似文献   

9.
For the successful application of carbon nanotubes (CNTs) as electron sources in various applications it is important to understand the relation between the morphology of the CNT and its emission properties. A method was developed to study individual, freestanding and pre-selected CNTs with high-resolution transmission electron microscopy (TEM). The technique provided important parameters of the CNT, such as the number of carbon walls and the nature of its apex. The resolution with which the freestanding apices were imaged depended linearly on the ratio of the length and the radius. CNTs were also imaged in situ in the TEM while emitting electrons. It was found that the structure of a CNT was highly stable below a certain threshold emission current of typically 2 microA, while various structural changes occurred above the threshold, leading to either damaging or repair of the structure at the apex of the CNT.  相似文献   

10.
Tribological Behavior of Carbon-Nanotube-Filled PTFE Composites   总被引:3,自引:0,他引:3  
Carbon nanotube/polytetrafluoroethylene (CNT/PTFE) composites with different volume fractions were prepared and their friction and wear properties were investigated using a ring-on-block under dry conditions. It was found that CNTs signifi-cantly increased the wear resistance of PTFE composites and decreased their coefficient of friction. PTFE composites with 15–20 vol.% CNTs exhibited very high wear resistance. The significant improvements in the tribological properties of CNT/PTFE composites are attributed to the super-strong mechanical properties and the very high aspect ratio of CNTs. The CNTs greatly reinforce the structure of the PTFE-based composites and thereby greatly reduce the adhesive and plough wear of CNT/PTFE composites. The CNTs are released from the composite during sliding and transferred to the interface of the friction couples. They thus serve as spacers, preventing direct contact between the mating surfaces and thereby reducing both wear rate and friction coefficient.  相似文献   

11.
Ni/carbon nanotube (Ni/CNTs) composite coatings were deposited on carbon steel plate by electroless deposition. The friction and wear properties were examined under dry sliding conditions using the ball-on-disk configuration. For reference, carbon steel plate was coated with Ni, Ni/SiC and Ni/graphite. The results show that the Ni/CNT coating has a microhardness value of 865 Hv, greater than for SiC reinforced composite deposits. The Ni/CNTs composite coating possesses not only a higher wear resistance but also a lower friction coefficient, resulting from their improved mechanical characteristics and the unique topological structure of the hollow nanotubes.  相似文献   

12.
A newly developed ionization gauge using carbon nanotube (CNT) field emission effect has been designed and manufactured. The fabricated ionization gauge is of a triode type, consisting of a cathode (carbon nanotube field emitter arrays), a grid and a collector. The principle involved here is that for a constant number of electrons available for ionization emitted from carbon nanotube arrays by the grid potential, a constant fraction of gas will be ionized and the number of ions collected in the collector will be proportional to the number of gas molecules in the chamber traversed by the electrons. Due to the excellent field emission characteristics of CNT, it is possible to make a cost effective cold cathode ionization gauge. A screen-printing method has been used to make the CNT cathode. The glass grid with Cr deposited by E-beam has been put on the cathode with a gap of 200 μm between the two electrodes. Using the voltage applied to the grid, the electrons emitted from the carbon nanotube ionize gas molecules in the chamber and the ionized molecules are gathered in the collector. At this time, the collector voltage is maintained at a lower level than that of the grid voltage to obtain a large ionization ratio. The current detected in the collector is proportional to the pressure in the chamber. The ionization characteristics are dependent on the gas and the voltage applied to the grid and collector. In this paper we have shown the various metrological characteristics of the simple pressure sensor utilizing carbon nanotube.  相似文献   

13.
Vertically aligned carbon nanotube (CNT) arrays were directly grown onto 440C stainless steel substrates by plasma-enhanced chemical vapor deposition. Tribological properties of both short and long CNTs samples were studied under normal loads of 10 g, 25 g and 100 g. The CNTs had a steady-state friction coefficient of about 0.2 in humid air. In dry nitrogen, a friction of 0.2 was measured under a load of 10 g while high friction was measured at 25 g and 100 g loads. No significant variation of tribological behavior was measured between the short and long CNTs samples. SEM observations showed that rubbing caused the CNTs to align or lay down along the wear scar. They formed aggregates and were compressed by rubbing, which resulted in layer-structured graphite formations. SEM observation of the wear scars revealed loss of CNT structures accompanied by the appearance of dark areas. Micro Raman spectroscopic studies demonstrated that the dark areas were graphitized CNTs. Shear stress aligned the basal planes of the small graphene sheets in the CNT layers to the low friction orientation and eventually caused formation of more ordered graphite. The tribological formation of interfacial carbon layers increased with increasing stress from higher loads.  相似文献   

14.
It has been reported that a carbon nanotube (CNT) is one of the strongest materials with its high failure stress and strain. Moreover, the nanotube has many favorable features, such as high toughness, great flexibility, low density, and so on. This discovery has opened new opportunities in various engineering applications, for example, a nanocomposite material design. However, recent studies have found a substantial discrepancy between computational and experimental material property predictions, in part due to defects in the fabricated nanotubes. It is found that the nanotubes are highly defective in many different formations (e.g., vacancy, dislocation, chemical, and topological defects). Recent parametric studies with vacancy defects have found that the vacancy defects substantially affect mechanical properties of the nanotubes. Given random existence of the nanotube defects, the material properties of the nanotubes can be better understood through statistical modeling of the defects. This paper presents predictive CNT models, which enable to estimate mechanical properties of the CNTs and the nanocomposites under various sources of uncertainties. As the first step, the density and location of vacancy defects will be randomly modeled to predict mechanical properties. It has been reported that the eigenvector dimension reduction (EDR) method performs probability analysis efficiently and accurately. In this paper, molecular dynamics (MD) simulation with a modified Morse potential model is integrated with the EDR method to predict the mechanical properties of the CNTs. To demonstrate the feasibility of the predicted model, probabilistic behavior of mechanical properties (e.g., failure stress, failure strain, and toughness) is compared with the precedent experiment results.  相似文献   

15.
Wang XQ  Wang M  Li ZH  Xu YB  He PM 《Ultramicroscopy》2005,102(3):181-187
To estimate the apex field enhancement factor associated with carbon nanotubes (CNTs) array on a planar cathode surface, the image model of floated sphere between parallel anode and cathode plates was proposed. Firstly, the field enhancement factor of individual CNT was given as the following expression, beta0=h/rho+3.5, where h is the height and rho is the radius of CNTs. Then the field enhancement factor of CNTs array was discussed and the above expression was modified to be beta=h/rho+3.5-W, in which W is the function of the intertube distance R and represents the coulomb field interaction between the CNTs. All results show that the intertube distance of CNTs array critically affects the field emission. When the intertube distance is less than the height of tube, the field enhancement factor will decrease rapidly with decreasing the intertube distance. According to the calculated results and considering the field emission current density, the filed emission is optimal theoretically when the intertube distance is comparable with the height of CNTs.  相似文献   

16.
We demonstrate here a novel method for performing in situ mechanical, electrical and electromechanical measurements on individual thin carbon nanotubes (CNTs) by using nanomanipulators inside a scanning electron microscope. The method includes three key steps: picking up an individual thin CNT from a substrate, connecting the CNT to a second probe or an atomic force microscope cantilever for the measurements and placing the CNT onto a holey carbon film on a transmission electron microscope grid for further structure characterization. With the method, Young’s modulus, the breaking strength and the effects of axial strain on electrical transport properties of individual thin CNTs can be studied. As examples, the mechanical, electrical and electromechanical properties of a double-walled CNT (DWCNT) and a single-walled CNT (SWCNT) were measured. We observed a strain-induced metallic-to-semiconducting transition of the DWCNT and a bandgap increase of the SWCNT. More importantly, the electromechanical properties of the SWCNT were correlated to its chirality determined by electron diffraction. The method enables us to relate mechanical, electrical and electromechanical properties of the measured thin CNTs to their atomic structures.  相似文献   

17.
Kim T  Kim S  Olson E  Zuo JM 《Ultramicroscopy》2008,108(7):613-618
We present the design and operation of a transmission electron microscopy (TEM)-compatible carbon nanotube (CNT) field-effect transistor (FET). The device is configured with microfabricated slits, which allows direct observation of CNTs in a FET using TEM and measurement of electrical transport while inside the TEM. As demonstrations of the device architecture, two examples are presented. The first example is an in situ electrical transport measurement of a bundle of carbon nanotubes. The second example is a study of electron beam radiation effect on CNT bundles using a 200 keV electron beam. In situ electrical transport measurement during the beam irradiation shows a signature of wall- or tube-breakdown. Stepwise current drops were observed when a high intensity electron beam was used to cut individual CNT bundles in a device with multiple bundles.  相似文献   

18.
Individual multiwalled carbon nanotube field emitters were prepared in a scanning electron microscope. The angular current density, energy spectra, and the emission stability of the field-emitted electrons were measured. An estimate of the electron source brightness was extracted from the measurements. The results show that carbon nanotubes are promising candidates to replace existing sources in high-resolution electron beam instruments.  相似文献   

19.
Zhang Y  Du JL  Xu JH  Deng SZ  Xu NS  Chen J 《Ultramicroscopy》2011,111(6):426-430
Carbon nanotube (CNT) has excellent field emission characteristics and could play as a good cold cathode in the application of vacuum electronic devices. However, the practical application faces a big obstacle regarding current fluctuation and deterioration of the CNT cathode. In this research, the formation of amorphous carbon (ac) layer between the CNT film and the substrate, and the effect of the existence of this layer on field emission stability of the CNT film are studied. The formation of the ac layer could be controlled by adjustment of growth temperature and hydrocarbon flow rate. The field emission character and current stability of the CNT film without ac layer are better than those of the CNT film with ac layer. The results attribute to the ac layer a thermal disequilibrium state under high current level. Moreover, adhesion capacity of the CNT film without ac layer is also better than that with the ac layer. It is concluded that the ac layer between the CNT film and substrate is a key factor in the stability of field emission characteristics and should be eliminated before applications.  相似文献   

20.
The electron distribution of open-ended single-walled carbon nanotubes (CNTs) with chirality indexes (7,0) and (5,5) in field emission conditions was calculated via a multi-scaled algorithm. The field emission images were produced numerically. It was found that the emission patterns change with the applied macroscopic field. Especially, the symmetry of the emission pattern of the (7,0) carbon nanotube is breaking in the lower field but the breaking is less obvious in the higher field. The magnification factor increases with the applied macroscopic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号