首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new microwave dielectric ceramic, NaSr4V5O17 with low firing temperature was fabricated via the traditional mixed oxide method. Rietveld refinement of XRD profiles and Raman spectrum analysis ascertained that the NaSr4V5O17 compounds crystallized into Sr2V2O7-like triclinic structure with space group P-1 (2) and Z = 1.6. The variation of Q × f value was explained by the combined effects of mean grain size and cell volume rather than packing fraction and bond valence. The change regulation of εr was similar to that of density. The |τf| value is mainly related to the cations bond valence. The NaSr4V5O17 ceramics sintered at 725 °C showed good compatibility with Ag electrode and superior dielectric properties: εr = 8.6, Q × f = 45 900 GHz, τf = ?57.0 ppm/K, making it a potential application for LTCC.  相似文献   

2.
The improved dielectric properties and voltage‐current nonlinearity of nickel‐doped CaCu3Ti4O12 (CCNTO) ceramics prepared by solid‐state reaction were investigated. The approach of A′‐site Ni doping resulted in improved dielectric properties in the CaCu3Ti4O12 (CCTO) system, with a dielectric constant ε′≈1.51×105 and dielectric loss tanδ≈0.051 found for the sample with a Ni doping of 20% (CCNTO20) at room temperature and 1 kHz. The X‐ray photoelectron spectroscopy (XPS) analysis of the CCTO and the specimen with a Ni doping of 25% (CCNTO25) verified the co‐existence of Cu+/Cu2+ and Ti3+/Ti4+. A steady increase in ε′(f) and a slight increase in α observed upon initial Ni doping were ascribed to a more Cu‐rich phase in the intergranular phase caused by the Ni substitution in the grains. The low‐frequency relaxation leading to a distinct enhancement in ε′(f) beginning with CCNTO25 was confirmed to be a Maxwell‐Wagner‐type relaxation strongly affected by the Ni‐related phase with the formation of a core‐shell structure. The decrease of the dielectric loss was associated with the promoted densification of CCNTO and the increase of Cu vacancies, due to Ni doping on the Cu sites. In addition, the Ni dopant had a certain effect on tuning the current‐voltage characteristics of the CCTO ceramics. The present A′‐site Ni doping experiments demonstrate the extrinsic effect underlying the giant dielectric constant and provides a promising approach for developing practical applications.  相似文献   

3.
Ultralow‐temperature sinterable alumina‐45SnF2:25SnO:30P2O5 glass (Al2O3‐SSP glass) composite has been developed for microelectronic applications. The 45SnF2:25SnO:30P2O5 glass prepared by melt quenching from 450°C has a low Tg of about 93°C. The SSP glass has εr and tanδ of 20 and 0.007, respectively, at 1 MHz. In the microwave frequency range, it has εr=16 and Qu × f=990 GHz with τf=?290 ppm/°C at 6.2 GHz with coefficient of thermal expansion (CTE) value of 17.8 ppm/°C. A 30 wt.% Al2O3 ‐ 70 wt.% SSP composite was prepared by sintering at different temperatures from 150°C to 400°C. The crystalline phases and dielectric properties vary with sintering temperature. The alumina‐SSP composite sintered at 200°C has εr=5.41 with a tanδ of 0.01 (1 MHz) and at microwave frequencies it has εr=5.20 at 11 GHz with Qu × f=5500 GHz with temperature coefficient of resonant frequency (τf)=?18 ppm/°C. The CTE and room‐temperature thermal conductivity of the composite sintered at 200°C are 8.7 ppm/°C and 0.47 W/m/K, respectively. The new composite has a low sintering temperature and is a possible candidate for ultralow‐temperature cofired ceramics applications.  相似文献   

4.
《Ceramics International》2020,46(11):18667-18674
Low temperature co-fired ceramics (LTCCs) technology plays an important role in modern wireless communication. Zn3-xCoxB2O6 (x = 0–0.25) low temperature fired ceramics were synthesized via traditional solid-state reaction method. Influences of Co2+ substitution on crystal phase composition, grain size, grain morphology, microwave dielectric properties, bond energy, and bond valence were investigated in detail. X-ray diffraction analysis indicated that the major phase of the ceramics was monoclinic Zn3(BO3)2. Solid solution was formed with Co2+ substituted for Zn2+ because no individual phase that contained Co was observed. An increase in the amount of Co2+ substitution changed average grain sizes, and regrowth of grains were observed with Co2+ substitution. Appropriate amount of Co2+ substitution improved densification. With changes in Co2+ substitution, bond energy of major phase and average bond valence of B–O were positively correlated to temperature coefficient of resonant frequency. The Zn2.927Co0.075B2O6 ceramic sintered at 875 °C for 4 h exhibited excellent microwave properties with εr = 6.79, Q × f = 140,402 GHz, and τf = −87.42 ppm/°C. This ceramic is regarded as candidate for LTCC applications.  相似文献   

5.
This study presents the microwave dielectric properties calculation of (1‐x)Ba3.75Nd9.5Cr0.25Nb0.25Ti17.5O54xNdAlO3 ceramics where x denotes the volume molar fraction. From X‐ray diffraction results, the solid solution limit is calculated to be about 0.76, where it forms a single BaNd2Ti4O12 phase in Region I (0≤x<0.76), and both BaNd2Ti4O12 and NdAlO3 coexist in Region II (0.76≤x<1). The solid solution limit is confirmed by independently calculating it from the dielectric constant data. There is less than 4% deviation between the measured dielectric constant (εr) and the one calculated from the Maxwell‐Wagner formula. The total quality factor (Q) remains almost constant in Region I and increases rapidly with the volume molar fraction of NdAlO3 in Region II. The measured Q×f, where f is the resonant frequency, is also consistent with the calculated value in both regions. The temperature coefficient at the resonant frequency is ?1.4 ppm/°C, which agrees well with the calculated value of 0 ppm/°C. In addition, we observed a close correlation between the bulk density and the phase evolution.  相似文献   

6.
《Ceramics International》2022,48(24):36433-36440
Microwave dielectric ceramics with simple composition, a low permittivity (εr), high quality factor (Q × f) and temperature stability, specifically in the ultrawide temperature range, are vital for millimetre-wave communication. Hence, in this study, the improvements in sintering behavior and microwave dielectric properties of the SnO2 ceramic with a porous microstructure were investigated. The relative density of the Sn1-xTixO2 ceramic (65.1%) was improved to 98.8%, and the optimal sintering temperature of Sn1-xTixO2 ceramics reduced from 1525 °C to 1325 °C when Sn4+ was substituted with Ti4+. Furthermore, the εr of Sn1-xTixO2 (0 ≤ x ≤ 1.0) ceramics increased gradually with the rise in x, which can be ascribed to the increase in ionic polarisability and rattling effects of (Sn1-xTix)4+. The intrinsic dielectric loss was mainly controlled by rc (Sn/Ti–O), and the negative τf of the SnO2 ceramic was optimised to near zero (x = 0.1) by the Ti4+ substitution for Sn4+. This study also explored the ideal microwave dielectric properties (εr = 13.7, Q × f = 40,700 GHz at 9.9 GHz, and τf = ?7.2 ppm/°C) of the Sn0.9Ti0.1O2 ceramic. Its optimal sintering temperature was decreased to 950 °C when the sintering aids (ZnO–B2O3 glass and LiF) were introduced. The Sn0.9Ti0.1O2-5 wt% LiF ceramic also exhibited excellent microwave dielectric properties (εr = 12.8, Q × f = 23,000 GHz at 10.5 GHz, and τf = ?17.1 ppm/°C). At the ultrawide temperature range (?150 °C to +125 °C), the τε of the Sn0.9Ti0.1O2-5 wt% LiF ceramic was +13.3 ppm/°C, indicating excellent temperature stability. The good chemical compatibility of the Sn0.9Ti0.1O2-5 wt% LiF ceramic and the Ag electrode demonstrates their potential application for millimetre-wave communication.  相似文献   

7.
The luminescent‐ferroelectic materials based on Sr1.90Ca0.15Na0.9Nb5O15 (SCNN) matrix doping with Eu3+ were synthesized by the conventional solid‐state reaction method. The crystal structure, photoluminescence, thermal stability, dielectric, ferroelectric, and piezoelectric behaviors were systematically investigated. XRD results revealed that Eu3+ introduction could induce the tungsten bronze phase transition from orthorhombic to tetragonal structures. The dielectric spectra of all specimens showed two broad dielectric anomalies: a high‐temperature ferroelectric phase transition (Tc) and a low‐temperature ferroelastic phase transition (Ts), both of which were suppressed at higher Eu3+ concentrations. The enhanced electrical properties were obtained in a proper Eu3+ concentration range of 0.03‐0.05. For all SCNN:xEu3+ samples, the strong red emission peak at 617 nm originating from the electric dipole transition of 5D07F2 was excited by different light excitations of 395 or 463 nm. Our results demonstrated that Eu3+‐doped SCNN materials might have promising potential in advanced multifunctional optoelectronic applications.  相似文献   

8.
Ba4(Sm0.15Nd0.85)9.33Ti18-zAl3z/4O54 (BSNT-zAl, 0.0 ≤ z ≤ 2.5) ceramics were prepared via a solid-state reaction, and the effects of Al doping on the microwave dielectric properties and defect behavior of the title compound were studied. X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) photographs suggested that Al ions successfully entered the lattice to form tungsten-bronze-like solid solutions. With a small amount of Al substitution, the relative dielectric constant (εr), and the temperature coefficient of resonant frequency (τf) values decreased, whereas the quality factor (Q × f) substantially increased by approximately 50%. The defect-related extrinsic dielectric loss was clarified via the thermally stimulated depolarization current (TSDC) technique. With Al doping, the TSDC relaxation of across-grain-boundary oxygen vacancies () vanished, whereas that of defect dipoles () appeared at relatively low temperatures. Therefore, in the BSNT-zAl ceramics, oxygen vacancies were more inclined to interconnect with to form defect dipoles. This could reduce the activity of and account for the notable improvement in the Q × f values. In particular, the excellent characteristics of εr = 67.33, Q × f = 16 530 GHz, and τf = +0.87 ppm/°C were achieved in the specimens with z = 1.5 sintered at 1350°C for 4 hours.  相似文献   

9.
Low-temperature-fired microwave ceramics are key to realizing the integration and miniaturization of microwave devices. In this study, a facile wet chemical method was applied to synthesize homogenous nano-sized CaF2 powders for simultaneously achieving low-temperature sintering and superior microwave dielectric properties. Pure CaF2 ceramics sintered at 950 °C for 6 h with good microwave dielectric properties (εr = 6.22, Q×f = 36,655 GHz, and τf = ?102 ppm/°C) was achieved. The microwave dielectric properties of the CaF2 ceramics were further improved by introducing LiF as a sintering aid. The sintering temperature of CaF2-based ceramics was effectively lowered from 950 °C to 750 °C with 10 wt% LiF doping, and excellent microwave dielectric properties (εr = 6.37, Q×f = 65,455 GHz, and τf = ?71 ppm/°C) were obtained.  相似文献   

10.
Effects of quenching process on dielectric, ferroelectric, and piezoelectric properties of 0.71BiFeO3?0.29BaTiO3 ceramics with Mn modification (BF–BT?xmol%Mn) were investigated. The dielectric, ferroelectric, and piezoelectric properties of BF–BT?xmol%Mn were improved by quenching, especially to the BF–BT?0.3 mol%Mn ceramics. The dielectric loss tanδ of quenched BF–BT?0.3 mol%Mn ceramics was only 0.28 at 500°C, which was half of the slow cooling one. Meanwhile, the remnant polarization Pr of quenched BF–BT?0.3 mol%Mn ceramics increased to 21 μC/cm2. It was notable that the piezoelectric constant d33 of quenched BF–BT?0.3 mol%Mn ceramics reached up to 191 pC/N, while the TC was 530°C, showing excellent compatible properties. The BF–BT?xmol%Mn system ceramics showed to obey the Rayleigh law within suitable field regions. The Rayleigh law results indicated that the extrinsic contributions to the dielectric and piezoelectric responses of quenched BF–BT?xmol%Mn ceramics were larger than the unquenched ceramics. These results presented that the quenched BF–BT?xmol%Mn ceramics were promising candidates for high‐temperature piezoelectric devices.  相似文献   

11.
《Ceramics International》2021,47(20):28675-28684
In next-generation mobile and wireless communication systems, low sintering temperature and excellent dielectric properties are synergistic objectives in the application of dielectric resonators/filters. In this work, Li2Ti0·98Mg0·02O2·96F0.04–1 wt% Nb2O5 (LTMN) ceramics were fabricated, and their sintering temperature was successfully lowered from 1120 °C to 750 °C by adjusting the mass ratio of B2O3–CuO (BC) additive. The optimum dielectric properties (ԑr ~ 24.44, Q × f ~ 60,574 GHz and τf ~ 22.8 ppm/°C) were obtained in BC-modified LTMN ceramics sintered at 790 °C. Even if their sintering temperature was lowered to 750 °C, the lowest temperature among the Li2TiO3-based dielectric ceramics currently used for LTCC technology, excellent dielectric properties (ԑr ~ 23.77, Q × f ~ 51,636 GHz) were still maintained. Additionally, no extra impurity phase was detected in BC-modified LTMN ceramics co-fired with Ag at 790 °C, indicating that BC-modified LTMN ceramics have a bright prospect in high-performance LTCC devices for 5G applications.  相似文献   

12.
In this study, relationships between the processing, microstructure, and properties of barium niobate (Ba5Nb4O15) are investigated. The milling of a Ba5Nb4O15 powder in water is effective with respect to size reduction. However, after milling in water, BaCO3 is formed within the slurry. With the increase in the amount of BaCO3 formed, the aspect ratio of the elongated Ba5Nb4O15 grains increases. The formation of the elongated Ba5Nb4O15 grains prohibits the densification. Hence, the microwave dielectric properties, including permittivity and quality factor, are poor because of the low density. In addition, milling in ethanol is carried out for comparison: A lower amount of BaCO3 is formed after milling in ethanol; the extent of anisotropic grain growth is thus reduced.  相似文献   

13.
In the present work, a systematic study on microwave properties of Ca1-xBixMo1-xVxO4 (0.2 ≤ x ≤ 0.5) solid solution ceramics synthesized by using the traditional solid-state reaction method was conducted. A scheelite structured solid solution was formed in the composition range 0.2 ≤ x ≤ 0.5. We successfully prepared a microwave dielectric ceramic Ca0.66Bi0.34Mo0.66V0.34O4 with a temperature coefficient of resonant frequency (TCF) near to zero and a low sintering temperature by using (Bi, V) substituted (Ca, Mo) in CaMoO4 to form a solid solution. The Ca0.66Bi0.34Mo0.66V0.34O4 ceramic can be well sintered at only 870 °C and exhibits good microwave dielectric properties with a permittivity (εr) ?21.9, a Qf ?18,150 GHz (at 7.2 GHz) (Q = quality factor = 1/dielectric loss; f = resonant frequency), a TCF ? + 0.1 ppm/°C. The chemical compatibility with silver indicated that the Ca0.66Bi0.34Mo0.66V0.34O4 ceramic might be a good candidate for the LTCC applications.  相似文献   

14.
Unfilled tungsten bronze ceramic Ba3.5Sm1.5Fe0.75Nb9.25O30 was prepared by a conventional solid‐state reaction method. Its structure, microstructure, and dielectric properties were investigated. Dielectric behaviors indicate that the ceramics are ferroelectric at room temperature with a remnant polarization ~1.61 μC/cm2 and a coercive field ~13.91 kV/cm. Ba3.5Sm1.5Fe0.75Nb9.25O30 ceramics have temperature stability with a high dielectric constant (εr) varying from 172 to 202 at the temperature range ?55 to 200°C (at 1 MHz). Capacitance change rate of the sample is less than 15%. These results indicate that Ba3.5Sm1.5Fe0.75Nb9.25O30 ceramics might be promising in temperature‐stable multi‐layer ceramic capacitors.  相似文献   

15.
The (La1?xSmx)NbO4 (x=0‐0.10) ceramics were prepared by the conventional solid‐state reaction method. The microstructure and the microwave dielectric properties were discussed in detail. The X‐ray diffraction patterns of (La1?xSmx)NbO4 (x=0‐0.10) showed that only a single monoclinic fergusonite structure of LaNbO4 could be found. The dielectric constant (εr) was affected by the dielectric polarizabilities and the B‐site bond valence. The variation trend of Q×f0 was in accordance with packing fraction. The temperature coefficient of resonant frequency (τf) had a close relationship with the B‐site bond valence, which was determined by the bond strength and bond length. When sintered at 1325°C for 4 hours, the (La1?xSmx)NbO4 ceramics with x=0.08 exhibited enhanced microwave dielectric properties: εr=19.37, Q×f0=62203 GHz and τf=2.57 ppm/°C. In addition, we made an overview about the ceramics that possess the same packing fraction and bond valence relationships, the results show that this structure‐property relationship has a wide applicability.  相似文献   

16.
Barium sodium niobate (BNN) glass‐ceramics were successfully synthesized through a controlled crystallization method, using both a conventional and a microwave hybrid heating process. The dielectric properties of glass‐ceramics devitrified at different temperatures and conditions were measured. It was found that the dielectric constant increased with higher crystallization temperature, from 750°C to 1000°C, and that growth of the crystalline phase above 900°C was essential to enhancing the relative permittivity and overall energy storage properties of the material. The highest energy storage was found for materials crystallized conventionally at 1000°C with a discharge energy density of 0.13 J/cm3 at a maximum field of 100 kV/cm. Rapid microwave heating was found to not give significant enhancement in dielectric properties, and coarsening of the ferroelectric crystals was found to be critical for higher energy storage.  相似文献   

17.
The influence of the CuO–TiO2 phase (CT) on dielectric properties of the CCTO ceramic was investigated. CaCuXTiYO12 (CCXTYO) powders were prepared based on the coprecipitated method, where 2.70 ≤ x ≤ 3.30 and 3.25 ≤ y ≤ 4.75. XRD patterns confirmed the presence of CCTO and also the secondary phases as CuO, TiO2, and CaTiO3 for each sample and aided in its quantification. Scanning Electron Microscopy (SEM) shows secondary phases evolution in the grain boundaries, and its influence on size and morphology of the grains. Impedance spectroscopy measurements showed that the ceramics with lower amount of CuO and TiO2 phases (CT/deficient ceramics) exhibited the highest ε′ values (2.1 × 104 at 1 kHz for CC2.9T3.75O ceramic). Also, CT/deficient ceramics showed lower tanδ values (0.090 at 1 kHz for CC2.9T3.75O ceramic) than ceramics prepared with excessive CuO–TiO2 phase (0.241 at 1 kHz for CC3.1T4.25O ceramics). The deficiency of CuO and TiO2 phases associated with high percentage of CCTO and CaTiO3 phases resulted in ceramics with the higher ε′ values.  相似文献   

18.
Mg0.7Al2.2O4 and Mg0.4Al2.4O4 ceramics with cation vacancies were synthesized using the molten salt method, and the relationships between the microwave dielectric properties and crystal structures of these materials were investigated. The 27Al NMR spectra of these ceramics indicate that the preferential occupation of tetrahedral sites by Al3+ cations was enhanced by the introduction of cation vacancies. The λ values of Mg0.7Al2.2O4 and Mg0.4Al2.4O4 ceramics fired at 1600°C, which correspond to the fraction of Al3+ cations in tetrahedral sites, were 0.37 and 0.60, respectively. Crystal structure refinements using the Rietveld method suggest that cation vacancies are preferentially located at octahedral sites in both ceramics. The εr and Q·f values of a Mg0.7Al2.2O4 ceramic fired at 1600°C were 7.7 and 201 111 GHz, respectively, while those of a Mg0.4Al2.4O4 ceramic fired at 1600°C were 7.5 and 232 301 GHz, respectively. These data demonstrate that the preferential occupation of tetrahedral sites by Al3+ cations following the introduction of cation vacancies enhances the Q·f value.  相似文献   

19.
Dense SrLa(R0.5Ti0.5)O4 (R=Mg, Zn) ceramics were prepared by a standard solid‐state reaction method. The single phase with complex K2NiF4‐type layered perovskite structure and I4/mmm space group was revealed by XRD, and the refined structure was analyzed by Rietveld analysis. Significantly improved dielectric constant was obtained in SrLa(R0.5Ti0.5)O4 ceramics compared to the analogues SrLaAlO4 and SrLaGaO4, which is attributed to the increasing normalized bond lengths of Sr/La‐O(1) and Sr/La‐O(2a) bonds and the higher polarizability of (R0.5Ti0.5)3+ than Al3+ and Ga3+. In addition, τf converts to a positive value with the increase in dielectric constant. The following microwave dielectric properties were obtained in the dense ceramics: εr=25.5, Qf=72 000 GHz, τf=29 ppm/°C for SrLa(Mg0.5Ti0.5)O4, and εr=29.4, Qf=34 000 GHz, τf=38 ppm/°C for SrLa(Zn0.5Ti0.5)O4. Furthermore, the stability of K2NiF4‐type structure in MLnBO4 [M=Ca, Sr, Ba; Ln=Y, Sm, Nd, La; B=Al, Ga, (Mg0.5Ti0.5), (Zn0.5Ti0.5)] compounds was discussed in relation to the tolerance factor of perovskite layer and the radius ratio of M2+ and Ln3+, based on which near‐zero τf values are expected to be obtained in SrLa(R0.5Ti0.5)O4‐SrLaAlO4 and SrLa(R0.5Ti0.5)O4–SrLaGaO4 unlimited solid solutions.  相似文献   

20.
The microwave dielectric properties of low-loss A0.5Ti0.5NbO4 (A = Zn, Co) ceramics prepared by the solid-state route had been investigated. The influence of various sintering conditions on microwave dielectric properties and the structure for A0.5Ti0.5NbO4 (A = Zn, Co) ceramics were discussed systematically. The Zn0.5Ti0.5NbO4 ceramic (hereafter referred to as ZTN) showed the excellent dielectric properties, with ɛr = 37.4, Q × f = 194,000 (GHz), and τf = −58 ppm/°C and Co0.5Ti0.5NbO4 ceramic (hereafter referred to as CTN) had ɛr = 64, Q × f = 65,300 (GHz), and τf = 223.2 ppm/°C as sintered individually at 1100 and 1120 °C for 6 h. The dielectric constant was dependent on the ionic polarizability. The Q × f and τf are related to the packing fraction and oxygen bond valence of the compounds. Considering the extremely low dielectric loss, A0.5Ti0.5NbO4 (A = Zn and Co) ceramics could be good candidates for microwave or millimeter wave device application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号