首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《应用陶瓷进展》2013,112(5):255-264
Abstract

Pure titania pulp containing amorphous titania was heated at different temperatures and times. Above 650°C anatase phase was evolved and between 900 and 1000°C, anatase–rutile transformation occurred. The anatase–rutile transformation in TiO2 in the presence of different transition metal oxides, namely Fe2O3, Cr2O3, NiO, CuO and MnO2 under argon and hydrogen atmospheres was investigated. The different phases of TiO2 were determined using powder X-ray diffraction (XRD). The anatase–rutile transformation temperature was found to be lowered in the presence of transition metal oxides. The transformation temperature was found to vary much in argon and hydrogen atmospheres compared to air in the presence of the metal oxides. Also the method of preparation of metal oxide doped TiO2 influences rutilation. Other methods such as chemical analysis, surface area measurements and crystallite size calculation were used for the characterisation of the samples. The surface area of heated samples was found to be decreased while crystallite size increased due to rutilation on heating. The samples were also observed under a scanning electron microscope to characterise the microstructural changes associated with each thermal treatment and atmosphere. The morphology of doped titania changes much on heating due to phase modification. The atmosphere of heating also has important effect on deciding the morphology of rutilated titania.  相似文献   

2.
TiO2 and La-doped TiO2 samples with La loading between 0.2% and 2% have been prepared, characterised, and tested in the catalytic oxidation of soot by O2. La doping prevents anatase to rutile phase transformation and crystallite size growth when heated at 800 °C, as deduced from XRD, Raman spectroscopy and BET surface area measurements. The optimum La loading was found to be 0.2%. The catalytic activity of TiO2 and La-doped TiO2 samples tested mainly depends on crystallite size, the lower the size the better the activity. TiO2 phase composition is not a key factor in the catalytic oxidation of soot.  相似文献   

3.
Heterogeneous photocatalysis can be exploited for the decomposition of micro-organisms which have developed on the surfaces of building materials. In this work, the efficiency of titanium dioxide coatings on fired clay products is examined. The sol–gel method is used to synthesize a fine TiO2 powder with a specific surface area of 180 m2 g?1. Thermal treatment of the chemical gel at 340 °C leads to crystallisation in the anatase phase and with further temperature increase, crystallite growth. For thermal treatments in the range 580–800 °C, there is a progressive transition from anatase to rutile. However, despite a decrease in specific surface area of the powder attributed to aggregation/agglomeration, the coherent domain size deduced from X-ray diffraction measurements remains almost constant at 23 nm. Once the transition is completed, increase of thermal treatment temperature above 800 °C leads to further crystallite growth in the rutile phase. The thermally treated titania powders were then sprayed onto fired clay substrates and the photocatalytic activity was assessed by the aptitude of the coating to degrade methylene blue when exposed to ultraviolet light. These tests revealed that the crystallite size is the important controlling factor for photocatalytic activity rather than the powder specific surface area or the anatase/rutile polymorph ratio.  相似文献   

4.
The mesoporous anatase form of TiO2 was prepared by modified sol–gel method using ionic liquid as a template agent. The prepared nanosize TiO2 particle was characterized by N2-physisorption, XRD, TEM, and SEM. The physical properties of prepared TiO2 particles were compared with that prepared by conventional sol–gel method without template. It has been proved that the anatase phase prepared by modified sol–gel process using ionic liquid was preserved well even if the TiO2 samples were treated at high temperatures up to 800 °C while those prepared by conventional sol–gel method were transformed from anatase to rutile phase gradually during calcinations at 600 °C. Moreover, there was no phase transition in the sample obtained by sol–gel method with ionic liquid in spite of prolonged calcination for 60 h at 600 °C. However, in case of those samples prepared by conventional sol–gel method, the portion of rutile form was continuously increased with the increase in the calcination period.  相似文献   

5.
We have prepared TiO2 nanoparticles by the hydrolysis of titanium tetraisopropoxide (TTIP) using HNO3 as a peptizing agent in the hydrothermal method. The physical properties of nanosized TiO2 have been investigated by TEM, XRD and FT-IR. The photocatalytic degradation of orange II has been studied by using a batch reactor in the presence of UV light. When the molar ratio of HNO3/TTIP was 1.0, the rutile phase appeared on the titania and the photocatalytic activity decreased with an increase of HNO3 concentration. The crystallite size of the anatase phase increased from 6.6 to 24.2 nm as the calcination temperature increased from 300 °C to 600 °C. The highest activity on the photocatalytic decomposition of orange II was obtained with titania particles dried at 105 °C without a calcination and the photocatalytic activity decreased with increasing the calcination temperature. In addition, the titania particles prepared at 180 °C showed the highest activity on the photocatalytic decomposition of orange II. This paper was prepared at the 2004 Korea/Japan/Taiwan Chemical Engineering Conference held at Busan, Korea between November 3 and 4, 2004.  相似文献   

6.
《Ceramics International》2023,49(3):4607-4613
The transformation of anatase titanium dioxide (TiO2) to its rutile form generally occurs above 600 °C. The anatase to rutile transformation is influenced by the factors such as heating temperature, heating time and the states of particles of anatase TiO2. In the calcination of metatitanic acid, the phase transformation of anatase is a key step to form rutile TiO2 particles with desirable morphological and pigmentary characteristics. However, the precise roles of temperature and time are not clear in the construction of so called calcination intensity for promoting the anatase-rutile transformation to form pigmentary TiO2 from metatitanic acid. Here we show how the temperature and time have affected the anatase to rutile transformation and the crystal growth of metatitanic acid during the calcination. Through thermal analysis, XRD and SEM measurements, we found that the rutilization in metatitanic acid shows a similar growing trend in the most of phase transformation process. However, the trend of the transformation undergoes an abrupt change when rutilization is approaching to its completion. The changes of the morphology of metatitanic acid are related to the coarsening of the particles in the metatitanic acid during the calcination. Our results demonstrate that anatase to rutile transformation and coarsening of particles are affected by the heating temperature and heating time and the growth of TiO2 particles can be controlled through calcination intensity.  相似文献   

7.
Uncompensated Ga-V co-doped TiO2 samples have been prepared by modified sol-gel process. Inhibition of phase transition due to co-doping is confirmed by X-ray diffraction measurement. Activation of phase transition increases from 120?kJ/mol (x?=?0) to 240?kJ/mol (x?=?0.046) due to Ga-V incorporation. In anatase phase, lattice constant increases by the effect of Ga3+ interstitials. This results in inhibition of phase transition. Anatase phase becomes stable up to ~ 650?°C in co-doped sample whereas for pure TiO2 phase transition starts in between 450 and 500?°C. High-resolution transmission electron microscope image shows particle size decreases in anatase phase due to co-doping. Increasing strain due to Ga-V incorporation results in reducing crystallite size. Brunauer–Emmett–Teller analysis shows that surface increases from 4.55?m2/g (pure TiO2) to 96.53?m2/g (x?=?0.046) by Ga-V incorporation. In rutile phase, grain growth process is enhanced mainly due to the effect of Vanadium and particles show a rod-like structure with majority {110} facets. Bandgap decreases in both phases and reduced to visible light region. For charge balance in uncompensated Ga-V co-doped sample, structural distortion created in the lattice by combining effect of substitution, interstitials and oxygen vacancies, which results in stabilization of anatase phase and reducing of bandgap.  相似文献   

8.
《Ceramics International》2020,46(3):3275-3281
Ag–TiO2 nanocomposite thin films on silica glass were prepared through thermal evaporation in combination with RF magnetron sputtering. Thermal annealing induced changes in the optical, morphological and structural properties of Ag–TiO2 nanocomposites were examined using optical absorption, photoluminescence spectroscopy, Raman spectroscopy, FESEM, AFM and XRD. FESEM and AFM studies revealed cave in of the Ag–TiO2 thin film at various places leading to the formation nanoscale pits upon thermal annealing at 600 °C. The computed average size of pits was found to be 54 nm. Raman studies indicated 600 °C annealing induced transformation of anatase phase of TiO2 into anatase/rutile mixed phase TiO2. Optical absorption spectra showed systematic changes due to the effects of mixed phase formation and variation in the plasmonic behavior upon annealing. PL results of the as deposited Ag–TiO2 thin film showed peaks at 377, 402, 432 and 486 nm. PL studies of Ag–TiO2 nanocomposites treated at different annealing temperatures revealed changes in defect concentration in TiO2. The tentative mechanism for the creation of nanoscale pits in Ag–TiO2 thin film through thermal annealing was proposed.  相似文献   

9.
Transparent nanophase TiO2 thin films on soda lime glass were prepared from titanium tetraisopropoxide (TTIP) by a sol-gel dip-coating method. The TiO2 films had amorphous phase up to 400°C and anatase phase at 500°C. The amorphous TiO2 films obtained at 300–400°C showed considerable photoactivity for the degradation of formic acid. The photoactivity of the TiO2 films was enhanced with increasing calcination temperature from 300° to 500°C. The crystallinity of the anatase films at 500°C was improved with increasing calcination time up to 2 h and reduced with a further increase in calcination time to 4 h due to the significant formation of sodium titanate phase as a result of sodium diffusion. The four-time-dipping anatase films at 500°C exhibited the greatest photoactivity at the calcination time of 2 h. Sodium diffusion into TiO2 films was retarded by a SiO2 underlayer of 50 nm in thickness.  相似文献   

10.
Nanosized TiO2 powders were prepared from the precipitation in the TiCl4 precursor under various pH values. The prepared titania existed in the form of nanocrystalline anatase with some brookite, which was evidenced by X-ray diffraction analysis and Raman spectroscopy. The average crystallite sizes of the TiO2 particles heat treated at 450 °C for 2 h are in the range of 7–9 nm. The lattice constant c of anatase increased with increasing the synthesized pH value, whereas the volume fraction of the brookite phase increased with decreasing the synthesized pH value. The beginning and ending temperatures for the anatase–rutile transformation were found to decrease with increasing the volume fraction of the brookite phase. The brookite phase in the powder is responsible for enhancing the anatase–rutile transition.  相似文献   

11.
Process variables such as reaction temperature (55 to 90 °C), calcination temperature (450 to 750 °C), and concentration of TiCl4 precursor (26 to 105 mM) have been examined in order to tailor the surface area, crystallite size, and the anatase/rutile ratio of the polycrystalline TiO2 microcapsules prepared by a template-implantation route in heptane solvent. The hollow capsules are all non-aggregating with nanoporous shell structure. Among the process variables examined, the Brunauer–Emmett–Teller (BET) surface area and the anatase/rutile ratio are found critically dependent on the reaction temperature, in which a reduced reaction temperature (from 90 to 55 °C) leads to a higher BET value (from 8.4 to 36.4 m?2 g?1), a predominant anatase phase (weight fraction of the anatase phase increases from 0.20 to 0.84), and an improved photodegradation of aqueous methylene blue (MB) dye under UV exposure (the degradation rate increases from 0.5×10?2 to 5.5×10?2 min?1).  相似文献   

12.
《应用陶瓷进展》2013,112(7):389-393
Abstract

Abstract

Tm doped TiO2 nanoparticles have been synthesised by hydrolysis-precipitation method. The effect of heat treatment on the crystal phase and photocatalytic activity of Tm doped TiO2 nanoparticles has been studied. The prepared samples were characterised by transmission electron microscopy, X-ray diffraction, Fourier transformed infrared and diffuse reflection spectrum analysis. The results show that Tm3+ doping can effectively inhibit the phase transformation from antase to rutile and decrease the crystallite size of nano-TiO2 particles. There is an optimal Tm doping (1·4?mol.-%) after calcination at 550°C for the photocatalytic activity of methylene blue degradation.  相似文献   

13.
A dopant-free aerosol synthesis of highly crystalline TiO2 nanoparticles (20–35 nm) with tunable polymorphic content is demonstrated by rapid flame spray pyrolysis. By controlling precisely the total ambient oxygen partial pressure of the combustion in a quartz tube enclosure, anatase content as high as 96 wt% (4 wt% rutile) was obtained at high oxic flame conditions, while rutile content as high as 94 wt% (6 wt% anatase) was obtained under anoxic flames. The polymorphic variability lies within a narrow range of combustion equivalence ratios, that is, 1.0<Φ<1.5. Unlike any other flame aerosol syntheses, the anatase and rutile crystallite sizes were similar within each sample. Under highly oxic flame conditions (Φ<1.0), twinnings between anatase {0 1 1} planes could be observed, inferring oriented attachment taking place. Such mechanism could not, however, be seen under anoxic flame (Φ>1.0) possibly due to physical hindrance by surface carbonaceous content (typically <2 wt%). The carbon content can be easily removed by short calcination without significantly affecting the surface areas and crystallite properties of the original TiO2 nanocrystals, preserving hence its pristine state.  相似文献   

14.
A series of TiO2–SiO2 mixtures – having the following stoichiometry Ti1?xSixO2, with x = 0, 0.1, 0.3 and 0.5 atoms per formula unit – were prepared by using precursor oxides and fired at three temperatures (900, 1000 and 1200 °C). The modifications in the structure and, consequently, on the photocatalytic activity, induced by the addition of SiO2 into the TiO2 powder, were thoroughly investigated by using various analytical techniques: X-ray powder diffraction, electron microscopy (FE-SEM and TEM), XPS, FT-IR, DRS and BET analysis. The results underlined as essentially no solid solution occurs between the two crystalline end-members. Nevertheless, silica addition caused a retarding effect on anatase-to-rutile phase transformation and on the crystallite growth.The photocatalytic activity of the powders was assessed in gas phase and the results were explained by taking into account the anatase and rutile relative amounts in the samples, their crystallite size, the surface hydroxyl groups adsorbed on the photocatalysts and the surface area of the mixtures.  相似文献   

15.
Anatase TiO2 was doped with metal ions like Th4+, V5+ and Mo6+ and tested for the degradation of imidachloprid under solar light. X-ray diffraction results inferred that all the dopants stabilized the anatase phase irrespective of their nature, oxidation state and ionic size. The undoped and transition metal ion doped TiO2 were completely transformed to rutile phase at 700 °C while rare earth Th4+ doped sample completely transformed to rutile phase at 1,000 °C. The rare earth dopant stabilized the anatase phase by hindering the growth of crystallite size. Among the photo catalysts used, Th4+ (0.06%)-TiO2 showed highest activity and its efficiency was 2.8 times higher than that of Degussa P-25. The Th4+ ion lowered the band gap of TiO2 to 2.6 and 2.5 eV facilitating solar light absorption. Detrapping of the trapped charge carriers depends on electronic configuration and the oxidation state of the dopants.  相似文献   

16.
《Ceramics International》2016,42(4):5113-5122
TiO2 nanoparticles are currently used as coating for self-cleaning building products. In order to achieve high self-cleaning efficiency for outdoor applications, it is important that titania is present as anatase phase. Moreover, it is desirable that the particle sizes are in nano-range, so that a large enough surface area is available for enhanced catalytic performance. In this work, TiO2 nanoparticles doped with 0–5 mol% Nb2O5 were synthesized by co-precipitation. Nb2O5 postponed the anatase to rutile transformation of TiO2 by about 200 °C, such that after calcination at 700 °C, no rutile was detected for 5 mol% Nb2O5-doped TiO2, while undoped TiO2 presented 90 wt% of the rutile phase. A systematic decreasing on crystallite size and increasing on specific surface area of TiO2 were observed with higher concentration of Nb2O5 dopant. Photocatalytic activity of anatase polymorph was measured by the decomposition rate of methylene blue under ultraviolet and daylight illumination and compared to commercial standard catalyst (P25). The results showed enhanced catalysis under UV and visible light for Nb2O5-doped TiO2 as compared to pure TiO2. In addition, 5 mol% Nb2O5-doped TiO2 presented higher photocatalytic activity than P25 under visible light. The enhanced performance was attributed to surface chemistry change associated with a slight shift in the band gap.  相似文献   

17.
This study describes the effect of amphiphilic organic molecules (surfactants) in a sol on the physicochemical properties and photocatalytic activity of crystalline TiO2 nanoparticles prepared via a simple sol–gel route at high temperatures from 400 to 800 °C. Addition of polyoxyethylenesorbitan surfactant and polyethylene oxide and polypropylene oxide triblock copolymer as particle size inhibitors and pore directing agents into a stable titania sol affected the physicochemical properties of TiO2 nanoparticles such as their crystallographic structure, morphology, and defect structure. With the addition of the surfactants, the ratio of anatase and rutile crystal phases of TiO2 was controlled and an active anatase crystal phase was maintained during heat treatment up to 800 °C. Decrease in the sintering rate and inhibition in crystal growth were also observed, which resulted in higher surface area and inhibition of crystallite aggregation. Bulk defects in TiO2 were reduced while surface defects were increased as a result of the addition of surfactants. These physicochemical properties of TiO2 nanoparticles were correlated with photocatalytic degradation of 4-chlorophenol in water. The results revealed that high crystallinity, anatase crystal phase, high specific surface area, surface defects, and segregated morphology of TiO2 nanoparticles, which were induced by the addition of surfactants, were more advantageous for enhancing photocatalytic destruction of the model organic compound tested in the study.  相似文献   

18.
Nanosized titania powders were prepared by controlling the hydrolysis of TiCl4 in aqueous solution. The powders were characterised by TEM, HREM, XRD, ED, and BET techniques. In the presence of a small amount sulphate ions, when TiCl4 solution hydrolysed at 70°C, the obtained powder was pure anatase and its primary particle size was 3.5 nm, which is finer than that of alkoxide-derived powders, moreover, its anatase-rutile transformation was retarded. However, at the same temperature, in the absence of SO42− the synthetic powder was a mixture of the anatase and rutile, the primary particle size in the rutile phase was 4.3 nm. When TiCl4 solution hydrolysed at 20°C, the prepared TiO2 powder was amorphous and its BET surface area was as high as 501 m2/g. The results of UV–Vis absorption spectra indicate that the presence of sulphate ions accelerated the growth of TiO2 clusters to anatase.  相似文献   

19.
The effect of germanium oxide (GeO2) addition on the anatase-to-rutile phase transition was investigated by differential thermal analysis (DTA), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). TiO2 xerogels containing up to 20 mol% GeO2 were prepared by refluxing and hydrolyzing titanium tetraisopropoxide (TTIP) and germanium butoxide (GB) using nitric acid as a catalyst. The following occurred with increasing amounts of GeO2 in the xerogels: (i) the crystallization temperature of anatase increased from 410° to 565°C and the DTA temperature of the anatase-to-rutile phase transition increased from 676° to 977°C in 20 mol% GeO2-containing xerogel; (ii) the crystallite size of anatase became smaller; (iii) the lattice a-parameter of the anatase showed little change, but the c-parameter decreased up to 20 mol% GeO2; (iv) both the lattice a- and c-parameters of the rutile decreased monotonically. From these results, the added GeO2 is considered to become incorporated into the anatase structure. The following occurred with increasing anatase heating temperature: (i) the lattice c-parameter of the anatase increased gradually and approached the value of pure anatase; and (ii) the chemical composition of the xerogel surfaces, measured by XPS, showed an increase in GeO2 content, indicating the expulsion of GeO2 from the anatase to form an amorphous surface layer. The formation of this amorphous GeO2 surface layer is thought to play an important role in retarding the anatase-to-rutile phase transition by suppressing diffusion between the anatase particles in direct contact, and limiting their ability to act as surface nucleation sites for rutile, as in the case of SiO2 additions. However, GeO2 addition is less effective than SiO2 in retarding the phase transition.  相似文献   

20.
One of the important ways to improve photocatalytic efficiency is to prepare catalyst with enhanced surface area. In this work, titanium dioxide (TiO2) nanoparticles having enhanced surface area were synthesized under the interference of SiO2. The mixed oxide, SiO2-TiO2 (10% mol% Si), was prepared by a sol-gel procedure using titanium tetra-n-butoxide as Ti-precursor. The commercial SiO2 nanoparticles were added into the TiO2 sols after hydrolysis. After condensation and calcination heat treatment, the SiO2-TiO2 nanoparticles were obtained. To achieve the purpose of obtaining the high-surface-area TiO2, the SiO2 was removed subsequently by aqueous NaOH solution. The TiO2 products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), electron spectroscopy for chemical analysis (ESCA), and by N2 adsorption-desorption isotherm. A fine mesoporous structure was formed for as-prepared TiO2 after calcination at 400°C and the average pore diameter was about 7 nm. The porous TiO2 products possess mixing phases of anatase and rutile. Phase transformation from anatase to rutile occurred when the samples were calcined. The phase transition temperature is sensitive to the silicon content. The particle size of ~43 nm remained constant upon calcinations from 500 to 700°C. The specific surface area was increased up to 66% compared to regular TiO2 samples that were prepared by the similar sol-gel procedure. The porous TiO2 nanostructures exhibited enhanced photocatalytic performance to decompose methylene blue under UV irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号