首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, a strategy is described to develop high toughness yttria-stabilised tetragonal zirconia polycrystalline (Y-TZP) composites reinforced with hard TiB2 particles. The experimental results revealed that fully dense Y-TZP composites with 30 vol.% TiB2 can be obtained with a moderate hardness of 13 GPa, a high strength up to 1280 MPa and an excellent indentation toughness up to 10 MPa m1/2 by hot pressing in vacuum at 1450 °C. The toughness of the composites can be tailored between 4 and 10 MPa m1/2 by varying the yttria stabiliser content of the ZrO2 matrix between 3 and 2 mol%. An optimum composite toughness was achieved for a ZrO2 matrix with an overall yttria content of 2.5 mol%, obtained by mixing pure monoclinic and 3 mol% Y2O3 co-precipitated ZrO2 starting powders. An important observation is that the thermal residual tensile stress in the ZrO2 matrix due to the TiB2 addition, needs to be taken into account when optimising the transformability of the ZrO2 matrix in order to develop high toughness Y-TZP composites.  相似文献   

2.
Silicon carbide (SiC)-aluminium oxynitride (Alon) ceramic composites exhibited improved mechanical properties, but the high temperature oxidation behaviour was unknown. The aim of this investigation was to identify oxidation characteristics and kinetics of 8 wt% SiC-Alon composites over a temperature range between 700 °C and 1200 °C in air. The Alon matrix and SiC particles near the surface were oxidized to form Al2O3 and SiO2, respectively. The starting oxidation temperature of Alon was observed to be about 1000 °C. While the addition of nano-sized SiC particles resulted in a reduced starting oxidation temperature due to the large cumulative surface area and high total surface energy, the oxidation resistance at higher temperatures of 1100 °C and 1200 °C was remarkably enhanced. The oxidation kinetics changed from a linear weight gain for pure Alon into a logarithmic weight gain for the composites due to the formation of a dense protective oxidation layer arising from the presence of SiO2.  相似文献   

3.
《Ceramics International》2020,46(3):2693-2702
To improve densification degree and reduce process time, microwave sintering and heat molding method were combined to prepared SiC matrix reinforced SiC (SiC/SiC) composite via polymer infiltration and pyrolysis process (PIP). The effects of heat molding pressures on the densification process, flexural behaviors and failure modes of the fabricated SiC/SiC were examined via scanning electron microscopy (SEM), computed tomography (CT) technique and mercury intrusion test. Results indicate that heat molding process promoted the densification degrees of SiC/SiC and adjusted the interphase bonding between SiC matrix and SiC fibers on the basis of rapid microwave heating. Owing to the appropriate interphase bonding, SiC/SiC composites fabricated under the heat molding pressure of 3 MPa had preferable flexural properties and failure mode.  相似文献   

4.
《Ceramics International》2022,48(11):15364-15370
This study reports on the preparation and mechanical properties of a novel SiCnf/SiC composite. The single crystal SiC nanofiber(SiCnf) reinforced SiC ceramic matrix composites (CMC) were successfully fabricated by hot pressing the mixture of β-SiC powders, SiCnf and Al–B–C powder. The effects of SiCnf mass fraction as well as the hot-pressing temperature on the microstructure and mechanical properties of SiCnf/SiC CMC were systematically investigated. The results demonstrated that the 15 wt% SiCnf/SiC CMC obtained by hot pressing (HP) at 1850 °C with 30 MPa for 60 min possessed the maximum flexural strength and fracture toughness of 678.2 MPa and 8.33 MPa m1/2, respectively. The nanofibers pull out, nanofibers bridging and cracks deflection were found by scanning electron microscopy, which are believed can strengthen and toughen the SiCnf/SiC CMC via consuming plenty of the fracture energy. Besides, although the relative density of the prepared SiCnf/SiC CMC further increased with the sintering temperature rose to 1900 °C, the further coarsend composites grains results in the deterioration of the mechanical properties for the obtained composites compared to 1850 °C.  相似文献   

5.
B4C-SiC composites with fine grains were fabricated with hot-pressing pyrolyzed mixtures of polycarbosilane-coated B4C powder without or with the addition of Si at 1950 °C for 1 h under the pressure of 30 MPa. SiC derived from PCS promoted the densification of B4C effectively and enhanced the fracture toughness of the composites. The sinterability and mechanical properties of the composites could be further improved by the addition of Si due to the formation of liquid Si and the elimination of free carbon during sintering. The relative density, Vickers hardness and fracture toughness of the composites prepared with PCS and 8 wt% Si reached 99.1%, 33.5 GPa, and 5.57 MPa m1/2, respectively. A number of layered structures and dislocations were observed in the B4C-SiC composites. The complicated microstructure and crack bridging by homogeneously dispersed SiC grains as well as crack deflection by SiC nanoparticles may be responsible for the improvement in toughness.  相似文献   

6.
《Ceramics International》2015,41(6):7890-7896
A manufacturing technique for fabricating a dense tubular SiC long fiber-reinforced SiC composite (SiCf/SiC) by hot pressing was developed. After infiltrating a SiC-based matrix phase, containing a 12 wt% of Al2O3–Y2O3 sintering additive, into the fine voids of a TyrannoTM-SA3 SiC fabric preform by electrophoretic deposition combined with the application of ultrasonic pulses, hot pressing was performed using 2 types of specially designed molds filled with graphite powder to transfer the vertical hot press force efficiently to the sidewalls of the tubular SiCf/SiC. Compared to the low density (~60%) of SiCf/SiC hot-pressed using a conventional mold, a density >95% could be acquired using a special mold filled with graphite powder as a pressure delivering medium. This method is suitable for fabricating a dense tubular SiCf/SiC, which cannot be obtained using a conventional extrusion method.  相似文献   

7.
Permeability of helium gas through the NITE-SiCf/SiC composites after applying tensile stress was measured experimentally in a vacuum apparatus. Tensile stress equal to 1.1-1.2 times the proportional limit stress (PLS) was applied parallel to the direction of the reinforced fiber. Results of the permeability experiments revealed that the permeability rapidly increased when threshold stress was applied on the specimens. The permeability of helium gas was governed by the narrowest diameter of the permeation pathway. In the case of NITE composites, the diameter of the pathway was calculated to be below 0.65 μm. The NITE composites exhibited superior performance even when the applied stress was greater than 1.2 times the PLS. Fiber bundles considerably magnified the permeability of helium gas because of the relatively large pore size of the intra-fiber bundles. Transverse cracks propagated with increasing stress and they connected fiber bundles when the applied stress was 1.10-1.15 times the PLS.  相似文献   

8.
Owing to the good physicochemical compatibility and complementary mechanical properties of Ti3SiC2 and Al2O3, Ti3SiC2/Al2O3 composites are considered as ideal structural materials. However, TiC and TiSi2 typically coexist during the synthesis of Ti3SiC2/Al2O3 composites through an in-situ reaction, which adversely affects the mechanical properties of the resulting composites. In this study, Ti3SiC2/Al2O3 composites were prepared via in-situ hot pressing sintering at 1450 °C. Ge, which was used as a sintering aid, improved the purity and mechanical properties of the Ti3SiC2/Al2O3 composites. This is because Ge replaced some of the Si atoms to compensate the evaporation loss of Si to form Ti3(Si1-xGex)C2, which showed a crystal structure similar to that of Ti3SiC2. Furthermore, the molten Ge accelerated the diffusion reaction of the raw materials, increasing the overall density of the Ti3SiC2/Al2O3 composites. The optimum Ge amount for improving the mechanical properties of the composites was found to be 0.3 mol. The flexural strength, fracture toughness, and microhardness of the composite with the optimum Ge amount were 640.2 MPa, 6.57 MPa m1/2, and 16.21 GPa, respectively. The formation of Ti3(Si1-xGex)C2 was confirmed by carrying out X-ray diffraction, energy dispersive spectroscopy, and transmission electron microscopy analyses. A model crystal structure of Ti3(Si1-xGex)C2 doped with 0.3 mol Ge was established by calculating the solid solubility of Ge.  相似文献   

9.
The pyrolised polysilazanes poly(hydridomethyl)silazane NCP 200 and poly(urea)silazane CERASET derived Si–C–N amorphous powders were used for preparation of micro/nano Si3N4/SiC composites by hot pressing. Y2O3–Al2O3 and Y2O3–Yb2O3 were used, as sintering aids. The resulting ceramic composites of all compositions were dense and polycrystalline with fine microstructure of average grain size <1 μm of both Si3N4 and SiC phases. The fine SiC nano-inclusions were identified within the Si3N4 micrograins. Phase composition of both composites consist of , β modifications of Si3N4 and SiC. High weight loss was observed during the hot pressing cycle, 12 and 19 wt.% for NCP 200 and CERASET precursors, respectively. The fracture toughness of both nanocomposites (NCP 2000 and CERASET derived) was not different. Indentation method measured values are from 5 to 6 MPa m1/2, with respect to the sintering additive system. Fracture toughness is slightly sensitive to the SiC content of the nanocomposite. Hardness increases with the content of SiC in the nanocomposite. The highest hardness was achieved for pyrolysed CERASET precursor with 2 wt.% Y2O3 and 6 wt.% Yb2O3, HV 23 GPa. This is a consequence of the highest SiC content as well as the chemical composition of additives.  相似文献   

10.
Three phase mixture of C/SiC/ZrO2 porous composites were prepared from commercially available phenolic resin, Si and ZrO2 powders. In the first step, mixed powders were pyrolyzed at 850 °C in vacuum to obtain a carbonized microporous material and then hot isostatically pressed at 1200, 1300 and 1350 °C for 10 min in an argon pressure of 50 MPa to prepare C/SiC/ZrO2 porous composites, in second step. The hot isostatic pressing led to the increase in density from 3.28 to 3.48 g/cm3 and reduction in porosity (from 32 to 20%) of the composites. X-ray diffraction analyses revealed the existence of β-SiC and carbon might be amorphous in the composites. According to the results of scanning electron microscopy, the crystal growth of β-SiC with facets was observed at 1350 °C. In addition, the energy dispersive spectroscopy showed that carbon/silicon atomic ratio was 1:1 in the crystals. X-ray photoelectron spectroscopy of the composites suggested that evolved gaseous molecules, due to the decomposition of phenolic resin, reacted with molecules containing Si to form β-SiC. The formation and growth of β-SiC in addition to the densification of matrix by hot isostatic pressing led to the increase in hardness (max.: 13.99 GPa) at higher temperatures.  相似文献   

11.
Traditionally, SiC components with complex shapes are very difficult or even impossible to fabricate. This paper aims to develop a new manufacturing process, combining selective laser sintering (SLS), cold isostatic pressing (CIP) and polymer infiltration pyrolysis (PIP), to manufacture complex silicon carbide parts and improve the mechanical properties of silicon carbide ceramic parts. The density and porosity of SiC/SiC composites were measured. Furthermore, the mechanical properties of the specimens with cold isostatic pressing and the specimens without cold isostatic pressing were compared. The bending strength of the specimens with cold isostatic pressing was 201?MPa, and the elastic modulus was 1.27?GPa. And, the bending strength of the specimens without cold isostatic pressing was 142?MPa, and the elastic modulus was 0.88?GPa. Increasing the density of SiC/SiC can enhance the mechanical properties of SiC/SiC composites.  相似文献   

12.
SiCf/SiC composites with BN interface were prepared through isothermal-isobaric chemical vapour infiltration process. Room temperature mechanical properties such as tensile, flexural, inter-laminar shear strength and fracture toughness (KIC) were studied for the composites. The tensile strength of the SiCf/SiC composites with stabilised BN interface was almost 3.5 times higher than that of SiCf/SiC composites with un-stabilised BN interphase. The fracture toughness is similarly enhanced to 23 MPa m1/2 by stabilisation treatment. Fibre push-through test results showed that the interfacial bond strength between fibre and matrix for the composite with un-stabilised BN interface was too strong (>48 MPa) and it has been modified to a weaker bond (10 MPa) due to intermediate heat treatment. In the case of composite in which BN interface was subjected to thermal treatment soon after the interface coating, the interfacial bond strength between fibre and matrix was relatively stronger (29 MPa) and facilitated limited fibre pull-out.  相似文献   

13.
《Ceramics International》2023,49(19):31163-31174
This study examined the effects of rare-earth (RE) elements such as Sc, Y, Ce, and Yb on the densification and oxidation of SiC. After adding binary or ternary RE nitrates in liquid form to β-SiC, hot pressing was performed at 1750 °C for 2 h under 20 MPa. RE nitrate was transformed into RE oxide and formed a liquid phase during sintering by a reaction with SiO2 present on the SiC surface, where the total amount of RE oxide was fixed at 5 wt%. RE-based silicate melts acted as sintering additives without decomposing SiC at high sintering temperatures. SiC containing Sc–Y as an additive showed a much higher density (≥ 99%) than SiC containing the conventional Al–Y additive (∼95%). The multicomponent RE additive with a melting point (Tm) < 1550 °C had a relatively lower density than that with a higher Tm, owing to the evaporation of the additive at 1750 °C. The density of SiC also depended on the additive composition. The oxidation test, conducted at 1300 °C for up to 168 h in air, exhibited a parabolic weight gain. The SiC sample sintered with the Sc–Yb additive achieved the highest resistance of 3.23 × 10−5 mg/cm4·s.  相似文献   

14.
A hybrid processing route based on vacuum infiltration, electrophoretic deposition, and hot-pressing was adopted to fabricate dense and tough SiCf/SiC composites. The as-received Tyranno SiC fabric preform was infiltrated with phenolic resin containing 5 wt.% FeO and SiC powders followed by pyrolysis at 1700 °C for 4 h to form an interphase. Electrophoretic deposition was performed to infiltrate the SiC-based matrix into the SiC preforms. Finally, SiC green tapes were sandwiched between the SiC fabrics to control the volume fraction of the matrix. Densification close to 95% ρtheo was achieved by incorporating 10 wt.% Al2O3-Sc2O3 sintering additive to facilitate liquid phase sintering at 1750 °C and 20 MPa for 2 h. X-ray diffraction and Raman analyses confirmed the catalytic utility of FeO by the formation of a pyrolytic carbon phase. The flexural response was explained in terms of the extensive fractography results and observed energy dissipating modes.  相似文献   

15.
Neutron diffraction, Raman spectroscopy, and x-ray diffraction were employed to measure the stresses generated in the ZrB2 matrix and SiC dispersed particulate phase in ZrB2-30 vol% SiC composites produced by hot pressing at 1900 °C. Neutron diffraction measurements indicated that stresses begin to accumulate at ∼1400 °C during cooling from the processing temperature and increased to 880 MPa compressive in the SiC phase and 450 MPa tensile in the ZrB2 phase at room temperature. Stresses measured via Raman spectroscopy revealed the stress in SiC particles on the surface of the composite was ∼390 MPa compressive, which is ∼40% of that measured in the bulk by neutron diffraction. Grazing incidence x-ray diffraction was performed to further characterize the stress state in SiC particles near the surface. Using this technique, an average compressive stress of 350 MPa was measured in the SiC phase, which is in good agreement with that measured by Raman spectroscopy.  相似文献   

16.
Uniaxial compressive creep behaviour of spark-plasma-sintered Al2O3/graphite particulate composites has been studied at temperature between 1250 and 1350 °C. Values of stress exponent, n, ranging from 1 to 1.4 and, activation energy, Q, of 600 ± 40 kJ/mol have been determined. With 10 vol% graphite in the composite, the creep deformation of the composite is controlled by the fine-grained Al2O3 matrix, where Coble creep has been identified as the dominant creep mechanism.  相似文献   

17.
Layer-structured interphase, existing between reinforcing fiber and ceramics matrix, is an indispensable constituent for fiber-reinforced ceramic composites due to its determinant role in the mechanical behavior of the composites. However, the interphase may suffer high residual stress because of the mismatch of thermal expansion coefficients in the constituents, and this can exert significant influence on the mechanical behavior of the composites. Here, the residual stress in the boron nitride(...  相似文献   

18.
Mechanical properties of Al2O3/ZrO2 composites   总被引:1,自引:0,他引:1  
In the present study, both t-phase zirconia and m-phase zirconia particles are incorporated into an alumina matrix. Dense Al2O3/(t-ZrO2+m-ZrO2) composites were prepared by sintering pressurelessly at 1600 °C. The microstructure of the composites are characterized, the elastic modulus, strength and toughness determined. Because the ZrO2 inclusions are close to each other in the Al2O3 matrix, the yttrium ion originally in t-ZrO2 particles can diffuse to nearby m-ZrO2 particles during sintering, and the m-phase zirconia is thus stabilized after sintering. The strength of the Al2O3/(t-ZrO2+m-ZrO2) composites after surface grinding can reach values as high as 940 MPa, which is roughly three times that of Al2O3 alone. The strengthening effect is contributed by microstructural refinement together with the surface compressive stresses induced by grinding. The toughness of alumina is also enhanced by adding both t-phase and m-phase zirconia, which can reach values as high as two times that of Al2O3 alone. The toughening effect is attributed mainly to the zirconia t–m phase transformation.  相似文献   

19.
《应用陶瓷进展》2013,112(7):375-381
Abstract

Abstract

SiC fibre reinforced SiC–matrix ceramic composites were fabricated by electrophoretic deposition (EPD) combined with ultrasonication. Fine β-SiC powder and Tyranno-SA fabrics were used as the matrix and fibre for reinforcement, respectively. Different amounts of fine Al2O3–Y2O3 were added for liquid phase assisted sintering. For EPD, highly dispersed slurry was prepared by adjusting the zeta potentials of the constituent particles to ?+40 mV for homogeneous deposition. The composite properties were compared after using two different consolidation methods: hot pressing for 2 h at 20 MPa and spark plasma sintering (SPS) for 3 min at 45 MPa at 1750°C to minimise the damage to the SiC fibre. The maximum flexural strength and density for the 45 vol.-% fibre content composites were 482 MPa and 98% after hot pressing, respectively, whereas those for SPS were 561 MPa and 99·5%, indicating the effectiveness of SPS.  相似文献   

20.
The co-continuous TiCx/Cu-Cu4Ti composites were prepared by infiltrating melting Cu into TiC0.5 porous preforms. TiC0.5 porous preforms were firstly synthesized by in-situ solid reaction process using powder Ti and carbon black as the starting materials, PVB as shaping and pore-forming agent. The prepared TiC0.5 preforms showed 3D-connected visible pores characterized with two classes of sizes, i.e. intergranular pores with size of 10–30?µm and intracrystalline pores with 2–3?µm. Microstructure and phase compositions of the composites were detected by scanning electron microscopy (SEM) equipped with EDS and X-ray diffraction (XRD). Metal region of the composites contained Cu as well as a new phase Cu4Ti, which was formed by reaction of Cu and TiC0.5. Composites prepared by this method had a compact structure and strong interface. Meanwhile, metal phase and ceramic phase maintained a co-continuous structure in three dimensions. Cu-Cu4Ti entered into the TiCx ceramic particles like root structure during the infiltration process. Flexural strength, fracture toughness and Vickers hardness of the composites reached 948.20?±?124.04?MPa, 12.62?±?0.37?MN?m?3/2 and 606.4?±?36.7 respectively when content of TiCx was 71.22?vol%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号