首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ni0.5Co0.5Fe2O4/graphene composites were synthesized successfully via one-step hydrothermal method. The crystal structure, morphology and corresponding elemental distribution, electromagnetic parameters and microwave absorption performances of the as-prepared composites were measured by XRD, SEM, TEM and VNA, respectively. The results indicated that the microwave absorbing performance can be obviously enhanced through the addition of graphene in a suitable range, the magnetic loss plays a dominant contribution for the microwave absorption of composites. The maximum reflection loss of ?30.92?dB at 0.84?GHz with a ?10?dB bandwidth over the frequency range of 0.58–1.19?GHz is obtained when the composite contains 12?wt% graphene and the thickness of sample is 4?mm. This investigation presents a simple method to prepare Ni0.5Co0.5Fe2O4/graphene composites with excellent microwave absorption performance in the low frequency band of 0.1–3?GHz.  相似文献   

2.
Magnetic/dielectric composites can offer good electromagnetic impendence. However, the strategy for embodying strong absorbing ability and broad effective absorption band simultaneously is a significant challenge. Therefore, assembled porous Fe3O4@g-C3N4 hybrid nanocomposites have been designed and synthesized, in which porous Fe3O4 nanospheres assembled by ~ 3?nm Fe3O4 nanoparticles are surrounded by g-C3N4. The introduction of g-C3N4 improves dielectric loss ability at 2–18?GHz and magnetic loss ability at 2–10?GHz, and enhances attenuation constant, and increases electromagnetic impedance degree. These merits ensure that assembled porous Fe3O4/g-C3N4 hybrid nanocomposites deliver superior microwave absorption performance, such as effective absorption bandwidth, fE, (reflection loss less ??10?dB) exceeding 5?GHz at 2.0–2.3?mm, the maximal fE of 5.76?GHz and minimal reflection loss of at least ??20?dB with thickness ranging from 2.3 to 10.0?mm, avoiding the sensitivity of absorption properties to absorbing layer thickness. Stable microwave absorbing performance originates from multi-interfacial polarization, multi-reflection, enhanced electromagnetic loss capability, and good electromagnetic impedance. Our study offers a new idea for stable microwave absorber at 2–18?GHz.  相似文献   

3.
Porous Fe3O4/C microspheres, which were Fe3O4 nanocrystals (~8?nm) embedded in an open nanostructured carbon network, were successfully synthesized via a facile hydrothermal process. The porous Fe3O4/C microspheres possessed many distinct attributes that facilitate efficient broadband electromagnetic wave absorption (EMWA). EMWs were attenuated through multiple reflections and absorption in the 3D interconnected porous structure of the microspheres; these processes collectively improved the interaction between the EMWs and the absorber. Additionally, the carbon network and embedded Fe3O4 nanoparticles caused significant dielectric losses and magnetic losses, respectively, which also enhanced EMWA. The EMWA characteristics of the microspheres could be precisely tuned via changing the carbon content to achieve optimized impedance matching. Porous Fe3O4/C microspheres with a 71.5?wt% carbon content displayed particularly impressive EMWA properties: a maximum reflection loss (RL) value of ??31.75 across broad band frequencies in the range of 7.76–12.88?GHz (RL < ?10?dB) at an absorber thickness of 3.0?mm. These excellent EMWA properties may be attributed to both dielectric loss (carbon) and magnetic loss (Fe3O4). Additionally, the 3D interconnected porous structure of the Fe3O4/C microspheres is especially favorable for impedance matching.  相似文献   

4.
In recent years, porous or layered magnetic materials have received increasing attention due to their low density and lightweight. In this work, porous BiFeO3 microspheres and three-dimensional porous BiFeO3 microsphere-reduced graphene oxide (RGO) composite (3D porous BiFeO3/RGO) were prepared by one-step etching processing using pure BiFeO3 particles as precursors. The precursor undergoes dissolution-recrystallization/reduction process, resulting in large amount of BiFeO3 fragments and graphene hybrid product, which forms 3D porous BiFeO3/RGO composite. Electromagnetic (EM) absorption performance measurements exhibit that at low thickness of 1.8?mm, porous BiFeO3/RGO composite can achieve reflection loss (RL) value up to ?46.7?dB and absorption bandwidth (defined by RL <?10?dB) exceeding 4.7?GHz (from 12.0 to 16.7?GHz), testifying outstanding microwave absorbing performance. Compared with pure porous BiFeO3, improved EM wave absorption ability of as-prepared porous BiFeO3/RGO composite is attributed to interfacial polarization, multiple reflections, scattering, and appropriate impedance matching.  相似文献   

5.
The Co0.33Ni0.33Mn0.33Fe2O4/graphene nanocomposite for electromagnetic wave absorption was successfully synthesized from metal chlorides solutions and graphite powder by a simple and rapid microwave-assisted polyol method via anchoring the Co0.33Ni0.33Mn0.33Fe2O4 nanoparticles on the layered graphene sheets. The Fe3+, Co2+, Ni2+ and Mn2+ ions in the solutions were attracted by graphene oxide obtained from graphite and converted to the precursors Fe(OH)3, Co(OH)2, Ni(OH)2, and Mn(OH)2 under slightly alkaline conditions. After the transformations of the precursors to Co-Ni-Mn ferrites and conversion of graphene oxide to graphene under microwave irradiation at 170?°C in just 25?min, the Co0.33Ni0.33Mn0.33Fe2O4/graphene nanocomposite was prepared. The composition and structure of the nanocomposite were characterized by X-ray diffraction (XRD), inductive coupled plasma emission spectroscopy (ICP), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (RS), transmission electron microscopy (TEM), etc. It was found that with the filling ratio of only 20?wt% and the thickness of 2.3?mm, the nanocomposite showed an ultra-wide effective absorption bandwidth (less than ?10?dB) of 8.48?GHz (from 9.52 to 18.00?GHz) with the minimum reflection loss of ??24.29?dB. Compared to pure graphene sheets, Co0.33Ni0.33Mn0.33Fe2O4 nanoparticles and the counterparts reported in literature, the nanocomposite exhibited much better electromagnetic wave absorption, mainly attributed to strong wave attenuation, as a result of synergistic effects of dielectric loss, conductive loss and magnetic loss, and to good impedance matching. In view of its thin thickness, light weight and outstanding electromagnetic wave absorption property, the nanocomposite could be used as a very promising electromagnetic wave absorber.  相似文献   

6.
《Ceramics International》2023,49(20):32458-32469
Absorbers at microwave frequencies with multiple frequency-band response are particularly important for use in military for stealth technology. Specially, ferrite based absorbing materials are significant for electromagnetic shielding and signal attenuation. The enhancement of reflection loss of ferrites along with carbonaceous materials are even more beneficial. Recently double-layer absorbers have extensively studied to meet the requirements of advanced absorbing materials in multiple frequency-band response. It still remains a challenge how to determine the type and thickness to couple the impedance-matching-layer to the absorption-layers for a double-layer absorber. We applied hydrothermal method to prepare Fe3O4 nanoparticle and combine them with either graphene oxide (GO) or reduced graphene oxide (rGO) to prepare a composite of specific quality to obtain Fe3O4@GO and Fe3O4@rGO nanocomposite. We studied microwave attenuation capabilities of single and double-layer absorbers containing these two materials. We have demonstrated that with a thin impedance matching layer as a first layer and an absorbing layer behind this layer for the double-layered absorber has much higher reflection loss (RL) than a single-layer. The Fe3O4@rGO composite as a single-layer absorber shows the best microwave absorption performance with RL close to −30 dB in all three microwave bands (X, Ku and K bands). The use of a double-layer structure as Fe3O4@GO as impedance matching layer and Fe3O4@rGO as absorbing layer exhibits the best absorption of −50 dB. This is much larger than the single-layered absorbers at all three frequency-bands. Such a performance is superior to many reported ferrite-based carbonaceous composites. Therefore, a double-layer absorber is best suited to coat the whole body of the aircraft or missiles to evade satellite detection, a preparation towards new-generation weapons for future warfare. Before performing the absorption studies we have characterized the ferrites, GO and rGO materials with various microstructural and magnetic characterizations.  相似文献   

7.
《Ceramics International》2020,46(15):23932-23940
A three-step strategy combining solvothermal and liquid phase reduction method had been developed for preparation of magnetic triple-shell hollow structural Fe3O4/FeCo/C (TSH–Fe3O4/FeCo/C) composite microspheres. FeCo was used to enhance electromagnetic (EM) wave absorption in different frequency band and broaden effective absorbing bandwidth, while carbon was used to improve impedance matching. Triple-shell hollow structure was designed to enrich the multiple interfaces to favor the interfacial polarization, increase the multiple reflections and scattering, and provide physicochemical protection to Fe3O4 core from oxidation. The microstructure and morphology of TSH-Fe3O4/FeCo/C composite microspheres were characterized by TEM, XRD and Raman in detail. The results indicated that magnetic Fe3O4 was completely covered by FeCo and carbon via layer by layer. As an EM wave absorber, the maximum reflection loss of TSH-Fe3O4/FeCo/C composite microspheres was up to -37.4 dB due to better normalized characteristic impedance at a thickness of 2.2 mm and the bandwidth less than -10 dB even reached up to 5.9 GHz. The excellent EM wave absorption performance was attributed to the combination of shell materials (Fe3O4, FeCo and carbon) and unique triple-shell hollow structure, which lead to multiple relaxation processes and good impedance matching. Consequently, this work would contribute to the design and preparation of high performance EM wave absorbent with outstanding absorbing property and wider absorption range.  相似文献   

8.
《Ceramics International》2022,48(2):1690-1698
Considering the promising efficiency of composites, in the current study, a graphene oxide (GO)-magnetite-Prussian blue (PB) composite material was prepared. The composite exhibited electrical conductivity, magnetic permeability, and permittivity nature, and was evaluated using electromagnetic interference (EMI) shielding studies. GO was developed by the Hummer's method, ferrite (Fe3O4) was incorporated by the sol-gel method, and PB was introduced in the mixture by an in-situ process. The fabricated samples were studied by X-ray diffraction, Raman Spectroscopy, Fourier-transform infrared spectroscopy along with EMI shielding efficiency (SE) evaluation. The SE of ?71.66 dB of reflection losses was measured at a frequency of 1.5 MHz. The GO/Fe3O4/PB composite provided the best results for the detection in the 1–18 MHz frequency range because of its excellent electric and magnetic properties. The obtained results demonstrated that the GO/Fe3O4/PB composite has promising potential applications in EMI shielding.  相似文献   

9.
The ferrite/reduced graphene oxide (rGO) composites have attracted increasing attention due to the combination of the dielectric loss of rGO and the magnetic loss of ferrites. In this paper, pod-like 3D Ni0.33Co0.67Fe2O4@rGO composites were prepared using a solvothermal reaction followed by cold quenching. The structures and morphologies of as obtained composites were characterized using X-ray diffractometer, Raman microscope, photoelectron spectroscopy, scanning electron microscope and transmission electron microscope. The Ni0.33Co0.67Fe2O4 microspheres with a diameter of 100–150?nm were wrapped in rGO rolls due to the shrinkage of rGO in liquid nitrogen. The rGO sheets with ferrite microspheres wrapped in form the pod-like 3D network morphology. The minimum reflection loss of as-prepared composites reaches ?47.5?dB and the absorption bandwidth (RL<?10?dB) is 5.02?GHz. The composites show much better absorbing performances than pure Ni0.33Co0.67Fe2O4 microspheres and Ni0.33Co0.67Fe2O4-rGO mixture formed by mechanically blending of cold quenched pure rGO and ferrite microspheres.  相似文献   

10.
In this study, magnetic Fe3O4 particles were prepared from copper/iron ore cider by precipitation oxidization method. The yield of Fe was 82.6 at%. XRD, TEM, SEM, EDS and microwave network analyzer were used to characterize the particles. The results showed that Fe3O4 particles were well crystallized and possessed an octahedral morphology, and the crystal size was about 200 nm; the sample with 70 wt% Fe3O4 exhibited the optimal absorbing ability, the minimum reflection loss was ?42.7 dB at 14.08 GHz and the bandwidth less than ?10 dB was about 4.2 GHz when the sample thickness was 1.9 mm. It was clearly demonstrated that the Fe3O4 particles prepared from copper/iron ore cider could be used as an effective microwave absorbing material.  相似文献   

11.
We describe the production of graphene-based composites for energy storage, obtained by a combination of electrochemical and solution processing techniques. Electrochemically exfoliated graphene oxide sheets (EGO) are produced using an original setup that allows fast expansion of graphite flakes and efficient exfoliation of expanded graphite via an electrochemical route. The sheets are deposited on a sacrificial nickel foam together with an iron hydroxide colloidal precursor. Calcination treatment simultaneously renders the EGO foam conductive and transforms Fe(OH)3 into hematite (α-Fe2O3), yielding a nanoporous Fe2O3 layer on the surface of the mesoporous EGO foam, creating an ideal structure for lithium storage. The obtained graphene/metal oxide hybrid is a continuous, electrically conductive three-dimensional (3D) composite featuring a hierarchical meso–nano porous structure. A systematic study of these composites, varying the Fe2O3:EGO ratio, is then performed to maximize their performance as nanostructured electrodes in standard coin cell batteries.  相似文献   

12.
The reduced graphene oxide (RGO)/NiFe2O4 composite was synthesized by a facile one-pot hydrothermal route, which avoided the usage of chemical reducing agent. The reduction of graphene oxide (GO) and the crystallization of NiFe2O4 crystals happened in a one-step hydrothermal process. The morphology, microstructure and magnetic properties of the composite were detected by means of XRD, XPS, TEM, EDX, TG-DSC and VSM. The maximum RL of the RGO/NiFe2O4 composite is −39.7 dB at 9.2 GHz with the thickness of 3.0 mm, and the absorption bandwidth with the RL below −10 dB is up to 5.0 GHz (from 12.7 to 17.7 GHz) with a thickness of 1.9 mm. The introduction of RGO signally enhanced microwave absorption performance of the NiFe2O4 NPs. It is believed that such composite will be applied widely in microwave absorbing area.  相似文献   

13.
《Ceramics International》2023,49(18):30214-30223
The development of ultralightweight and broadband electromagnetic wave (EMW) absorbing materials remains a big challenge. In this work, porous magnesium ferrite microspheres decorated nitrogen-doped reduced graphene oxide (NRGO/MgFe2O4) composite aerogels were prepared by a two-step route of solvothermal synthesis and hydrothermal self-assembly. Results of microscopic morphology characterization showed that NRGO/MgFe2O4 composite aerogels had a unique hierarchical porous structure. Moreover, the influence of additive amounts of graphene oxide on the electromagnetic parameters and EMW absorption properties of NRGO/MgFe2O4 composite aerogels was explored. Remarkably, the attained binary composite aerogel with the content of NRGO of 70.21 wt% exhibited the best EMW absorption performance. The minimum reflection loss reached up to −55.7 dB, and the corresponding effective absorption bandwidth was as large as 5.36 GHz at a thin matching thickness of 1.98 mm. Furthermore, when the matching thickness was slightly increased to 2.29 mm, the widest effective absorption bandwidth was enlarged to 7.1 GHz, covering the entire Ku-band. The magnetodielectric synergy and unique hierarchical porous structure in NRGO/MgFe2O4 composite aerogels not only improved the impedance matching, but also greatly enhanced the EMW absorption capacity. It was believed that the results of this work could be helpful for the preparation of graphene-based magnetic composites as broadband and efficient EMW absorbers.  相似文献   

14.
To reduce the thickness of the microwave absorbing materials, we have prepared 1-xSrTiO3-δ?xSrAl12O19 ceramics by hot?pressing sintering in the vacuum. The microstructure, dielectric, thermogravimetric analysis and microwave absorbing properties of 1-xSrTiO3-δ?xSrAl12O19 were systematically investigated and discussed. The 0.95SrTiO3-δ??0.05SrAl12O19 has high permittivity, the real part is from 1662.2 to 704.9 and the imaginary part is from 208.6 to 12. The absorption bandwidth (reflection loss ≤?5?dB) of 0.95SrTiO3-δ??0.05SrAl12O19 can cover 8.6???12.4?GHz and its thickness is only 0.232?mm which is much thinner than these recently reported by other researchers. For 0.942SrTiO3-δ??0.058SrAl12O19, the peak value of reflection loss is up to ??58.5?dB with a thickness of 0.75?mm. The 1-xSrTiO3-δ?xSrAl12O19 films could be excellent candidates for highly efficient and ultra?thin microwave absorbing materials.  相似文献   

15.
A naval hybrid buckypaper was fabricated by vacuum filtration method with monodispersion solution of Fe3O4 decorated Multiwalled carbon nanotubes (MWCNTs). The morphology, element composition and phase structure of hybrid buckypaper were characterized by field‐emission scanning electron microscope, energy dispersive spectrometer, and X‐ray diffraction. The microwave absorption and complex electromagnetic properties of the composites surface coated MWCNTs buckypaper (or Fe3O4/MWCNTs hybrid buckypaper) have been investigated in the frequency range of 8–18 GHz. The results indicate that the microwave absorption properties of composite structure have been evidently improved due to the Fe3O4/MWCNTs hybrid buckypaper' high magnetic loss and suitable dielectric loss properties. The reflection loss of composite surface coated Fe3O4/MWCNTs hybrid buckypaper (with a matching thickness d = 0.1 mm) is below ?10 dB in the frequency range of 13–18 GHz, and the minimum value is ?15.3 dB at 15.7 GHz. Thus, Fe3O4/MWCNTs hybrid buckypaper can become a promising candidate for electromagnetic‐wave‐absorption materials with strong‐absorption, thin‐thickness and light‐weight characteristics. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41974.  相似文献   

16.
A series of Fe3O4/C core–shell nanospindles with different shell thickness have been synthesized by a wet chemical method and subsequent high-temperature carbonization. The thickness of carbon shell can be well adjusted from 9 to 32 nm by changing the addition amounts of resorcinol and formaldehyde precursors during the coating process. Structure and morphology characterizations reveal that the carbon shell is amorphous structure and uniformly encapsulates on porous Fe3O4 nanospindles. For the first time, a flexible Fe3O4/C/poly(vinylidene fluoride) (PVDF) composite absorber was prepared by embedding the core–shell Fe3O4/C nanospindles in PVDF matrix. The electromagnetic properties of the composite show strong dependence on the carbon-shell thickness. The impedance matching for electromagnetic absorption is improved by the synergy effect between Fe3O4 nanospindles and encapsulated carbon shell. The Fe3O4/C/PVDF composite with thick carbon shell exhibits strong electromagnetic wave absorbing ability with thin absorber thickness. The minimum reflection loss for the absorber with thickness of 2.1 mm can reach −38.8 dB.  相似文献   

17.
Here, we developed a simple and efficient route for the preparation of three-dimensional (3D) Co3O4-anchored graphene composites using the sacrificial template-assisted method and the subsequent deposition process of Co3O4 nanoparticles. As structural guiding materials, polystyrene (PS) spheres provide 3D porous architectures with a high surface area. 3D porous graphene materials serve as conductive supporters for the deposition of Co3O4 nanoparticles through precipitation growth. The 3D porous composite structures of Co3O4/graphene composites were intensively investigated using scanning electron microscope, transmission electron microscope, and X-ray diffraction. The 3D Co3O4/graphene composites show a high specific capacitance of 328?F?g?1 with efficient and fast charge–discharge process in aqueous 6?M KOH electrolyte. In addition, the composites provide a good cycle lifetime, which retained 98% capacitance retention over 2000 cycles.  相似文献   

18.
Masoumeh Bayat 《Polymer》2011,52(7):1645-1653
In order to develop multifunctional nanofibers, the electrical conductivity and magnetic properties of Fe3O4/carbon composite nanofibers have been examined. Polyacrylonitrile (PAN) is used as a matrix to produce magnetic composite nanofibers containing different amounts of magnetite (Fe3O4) nanoparticles. Electrospun composite nanofibers were thermally treated to produce electrically conductive and magnetically permeable composite carbon nanofibers. The composite nanofibers were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), Raman spectroscopy, four-point probe and Superconducting Quantum Interference Device (SQUID). Uniform nanofibers were obtained with successful transferring of magnetic properties of Fe3O4 into the as-spun composite nanofibers. The electromagnetic properties were tuned by adjusting the amount of Fe3O4 in the matrix and carbonization process. The electrical conductivity, magnetic moment and also magnetic hysteresis rise up by adding Fe3O4 and increasing carbonization temperature. The high surface area provided by the ultrafine fibrous structures, the flexibility and tuneable electromagnetic properties are expected to enable the expansion of the design options for a wide rage of electronic devices.  相似文献   

19.
In this study, porous calcium silicate (CaSiO3) scaffolds were prepared by 3D gel-printing (3DGP) method and Fe3O4 water-based magnetic fluids (WMFs) were prepared by phacoemulsification compound chemical coprecipitation method. Fe3O4 WMFs were coated on CaSiO3 scaffolds surface to prepare Fe3O4/CaSiO3 composite scaffolds. The effect of WMFs with different Fe3O4 concentrations on porous CaSiO3 scaffolds was studied. The composition and morphological characteristics of porous scaffolds were analyzed by using scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) analysis. The magnetic properties were tested by vibrating sample magnetometer (VSM). The stability of Fe3O4 WMFs coatings and the degradability of composite scaffolds were tested by immersing them in simulated body fluid (SBF). The results show that when Fe3O4 concentration was 5.4% (w/v), the composite scaffolds had the highest saturation magnetization of 69.6 emu/g and the best stability in dynamic SBF. It is obviously that Fe3O4 WMFs coatings can be used for bone tissue engineering scaffolds repairing.  相似文献   

20.
《Ceramics International》2017,43(16):13146-13153
Ideal electromagnetic absorbing materials with lightweight and high efficiency have broad application outlook in military and civil fields. In this work, a 3D nanostructure material by hybridizing Fe3O4 nanocrystals and reduced graphene oxide (Fe3O4/rGO) were synthesized through an environmental-friendly one-pot solvothermal method. The effect of GO loading on electromagnetic (EM) wave absorption characteristic of Fe3O4/rGO was investigated. The introduction of rGO sheets not only prevented Fe3O4 from agglomerating, also improved the absorption performance of Fe3O4/rGO hybrids. With an appropriate addition, Fe3O4/rGO obtained a minimum reflection loss (RL) of −22.7 dB and the absorption bandwidth was 3.13 GHz (90% absorption).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号