共查询到20条相似文献,搜索用时 15 毫秒
1.
Ruofei Xiang Yuanbing Li Shujing Li Zhengliang Xue Hailu Wang 《International Journal of Applied Ceramic Technology》2021,18(5):1792-1800
The service condition of mullite thermal insulation materials is complicated, the effects of carbon deposition are always considered the primary cause of damage to mullite ceramic in carbon monoxide atmosphere. In the present study, mullite thermal insulation material was subjected to a carbon monoxide atmosphere at 1100°C–1400°C. The thermodynamics stability, phase composition, and microstructure of the mullite thermal insulation material were analyzed. Furthermore, the effects of carbon monoxide corrosion on thermal shock resistance and compressive creep behavior at high temperatures were evaluated. The carbon content in the mullite-based insulation material is below 0.02% after treatment at 1100°C–1400°C. After treatment at 1400°C, most areas in the specimen comprised corundum and glass phase, and K, Na, Ca, Mg, and Fe were detected as impurities, leading to the improvement of cold crushing strength after 20 thermal shocks but a remarkable recession in high-temperature compressive creep. 相似文献
2.
《Journal of the European Ceramic Society》2023,43(2):521-529
In order to meet the demand for thermal insulation and sound absorption, fibrous porous mullite ceramics (FPMC) with high porosity and an interconnected pore structure were prepared, followed by a pore structure modification with in situ grown mullite whiskers on the three-dimensional framework of the FPMC. The resultant hierarchical material exhibited superior sound absorption performance in the low-to-medium frequency to most reported sound-absorbing materials, as well as a sufficient compressive strength of 1.26 MPa with low thermal conductivity of 0.117 W·m?1·K?1. Moreover, the effects of solid content and mullite whiskers on the microstructure and physical properties of the material were analyzed. The increase of solid content led to increased compressive strength and thermal conductivity and decreased frequency corresponding to the first sound absorption peak. The thermal conductivity and compressive strength of the material increased as the mullite whiskers grew, while the median pore size decreased. 相似文献
3.
Jiaojiao Hu Shujing Li Yuanbing Li Xuesong Li Ruofei Xiang Zhe Qiao 《International Journal of Applied Ceramic Technology》2021,18(2):405-418
Generally, a multilayer structure is present inside a walnut shell, and the residual structure of the walnut shell is retained after impregnation and firing. When the walnut shell is used as a pore-forming agent, this structure helps in improving the mechanical and thermal insulation properties of the lightweight porous materials. In this study, porous mullite materials (PMMs) with plant morphological structure pores were prepared using a-Al2O3 and silica powder as the raw materials with addition of sol-impregnated walnut shell powder (WSP). The influence of sol type and firing temperature on the pore structure of the PMMs was analyzed, which affected the compressive strength and thermal conductivity. The plant morphological porous structure was observed in the samples after sol impregnation. After firing at different temperatures, the porous structure gradually contracted and supported the pores, improving the mechanical properties, while the complex porous structure increased the heat conduction path, thereby improving the insulation performance. Using WSP impregnated with silica-sol and zirconia-sol as pore-forming agents, PMMs with higher compressive strength and relatively low thermal conductivity (TC) were prepared. 相似文献
4.
Lang Lin Hengchang Wang Chenhe Xia Jie Xu Xuanyu Meng Runwu Yang Guoxin Hu Yanan Qu Feng Gao 《Journal of the American Ceramic Society》2023,106(6):3800-3811
Excessive sintering shrinkage leads to severe deformation and cracking, affecting the microstructure and properties of porous ceramics. Therefore, reducing sintering shrinkage and achieving near-net-size forming is one of the effective ways to prepare high-performance porous ceramics. Herein, low-shrinkage porous mullite ceramics were prepared by foam-gelcasting using kyanite as raw material and aluminum fluoride (AlF3) as additive, through volume expansion from phase transition and gas generated from the reaction. The effects of AlF3 content on the shrinkage, porosity, compressive strength, and thermal conductivity of mullite-based porous ceramics were investigated. The results showed that with the increase of content, the sintering shrinkage decreased, the porosity increased, and mullite whiskers were produced. Porous mullite ceramics with 30 wt% AlF3 content exhibited a whisker structure with the lowest shrinkage of 3.5%, porosity of 85.2%, compressive strength of 3.06 ± 0.51 MPa, and thermal conductivity of 0.23 W/(m·K) at room temperature. The temperature difference between the front and back sides of the sample reached 710°C under high temperature fire resistance test. The low sintering shrinkage preparation process effectively reduces the subsequent processing cost, which is significant for the preparation of high-performance porous ceramics. 相似文献
5.
ABSTRACTTo further improve the thermal insulation performance of porous mullite ceramics used in important industrial sectors, a combined foam-gelcasting and pore-former addition approach was investigated in this work, by which hierarchical porous mullite ceramics with excellent properties, in particular, thermal insulation property, were prepared. Both mesopores (2–50?nm) and macropores (117.8–202.7?μm) were formed in porous mullite ceramics resultant from 2?h firing at 1300°C with various amounts of submicron-sized CaCO3 pore former. The former mainly arose from the decomposition of CaCO3, and the latter from the foam-gelcasting process. The porous samples prepared with CaCO3 addition had low linear shrinkage of 2.35–4.83%, high porosity of 72.98–79.07% and high compressive strength of 5.52–14.82?MPa. Most importantly, they also exhibited a very low thermal-conductivity, e.g. 0.114?W?m?1?K?1 at 200°C, which was much lower than in the cases of their counterparts prepared via the conventional foam-gelcasting route. 相似文献
6.
Zhuofu Wan Shaobai Sang Yuzhou Ma Tianbin Zhu 《International Journal of Applied Ceramic Technology》2022,19(5):2749-2760
The preparation of refractories with both low thermal conductivity and high strength are continuously pursued in industrial furnaces. In this work, mullite refractories with low thermal conductivity and high strength were developed using fly ash as main raw material, and the influence of the quantity of fly ash and sintering temperature on the structure and properties of mullite refractories were investigated. The results show that mullite refractories with low thermal conductivity and high strength could be prepared by using fly ash in large proportion; the thermal conductivity of the samples decreased with the addition of the fly ash and increased with the increase of sintering temperature; the cold compressive strength and modulus of rupture of samples all are enhanced with the increase of sintering temperature, which is attributed to the formation of more elongated mullite by the reconstruction of fly ash at high temperature. For the mullite refractory using 65.04 wt% fly ash treated at 1600°C, the thermal conductivity was .732W/(m·k) at 1000°C, and the cold compressive strength and modulus of rupture could reach 143.5 ± 5.7 MPa and 47.0 ± 4.1 MPa respectively. It can be considered to use as a prospective work lining in industrial furnaces to meet energy saving requirements. 相似文献
7.
《Ceramics International》2022,48(14):20220-20227
A specially designed experimental device was used in laboratory to investigate the corrosion of mullite during the calcination of Li(NixCoyMnz)O2 (LNCM) materials. The anti-corrosion tests were carried out at 1000, 1100, 1200 and 1300 °C, and characterized with X-ray diffraction and scanning electron microscopy. The influence of temperature on the interactions between mullite insulation materials and LNCM materials was determined. In addition, the high-temperature creep properties of the mullite insulation materials before and after corrosion were tested. The laboratory scale tests, thermodynamic and kinetic calculations allowed a more comprehensive understanding of the evolution of the mullite insulation materials during serving for the roasting process of LNCM materials. Through this research, it is suggested that the upgrading of the kiln lining in the lithium battery industry should select materials with excellent resistance to alkali corrosion, especially excellent resistance to Li+ corrosion. 相似文献
8.
《应用陶瓷进展》2013,112(4):204-209
Porous mullite ceramics were prepared at 1300–1600°C for 2?h via a foam-gelcasting route using industrial-grade mullite powders as the main raw material, Isobam 104 as the dispersing and gelling agent, triethanolamine lauryl sulphate as the foaming agent and sodium carboxymethyl cellulose as the foam stabilising agent. The effects of firing temperature on the sintering behaviour of green samples as well as microstructures and properties of final porous mullite products were investigated. With increasing the temperature from 1300 to 1600°C, linear shrinkage and bulk density values of fired samples increased, whereas their porosity decreased. Mechanical strength and thermal conductivity values of fired samples decreased with increasing their porosities. Even at a porosity level as high as 79.4%, compressive and flexural strengths of fired samples (with average pore size of 314?μm) remained as high as 9.0 and 3.7?MPa, respectively, and their thermal conductivity (at 200°C) remained as low as 0.21?W?(m?1?K?1). 相似文献
9.
10.
Yeong-Shyung Chou Nathan Canfield Jeff F. Bonnett John S. Hardy Jeffry W. Stevenson 《International Journal of Applied Ceramic Technology》2020,17(5):2051-2061
Lanthanum strontium cobaltite (LSCo) is considered as a good candidate cathode contact material for solid oxide fuel cells, due to high electrical conductivity. However, LSCo has a very large coefficient of thermal expansion (CTE) than the cells and metallic interconnects. As a result, poor mechanical stability is expected during thermal cycling. To minimize the CTE mismatch, we investigate a composite approach involving mixing LSCo with an inert material of low CTE, such as mullite at volume fractions from 0.1 to 0.4. Composite's CTE shows a decreasing trend with increasing mullite volume fractions and is consistent with model predictions. X-ray powder diffraction analysis of sintered LSCo/mullite composites exhibits no presence of other phases for samples aged for 500 hours at 800°C, indicating chemical compatibility. Electrical conductivity by a 4-pt method shows a decreasing trend with increasing mullite content. Contact strength of as-sintered and thermally cycled samples show that only the composite with 0.4 volume fraction has a measurable strength; the other composites have no strength. Overall, the composite approach is demonstrated in the LSCo/mullite system to lower the CTE and hence achieve thermal cycle stability. The addition of the inert phase to the LSCo matrix, however, also reduces the electrical conductivity. 相似文献
11.
12.
使用聚乙烯吡咯烷酮(PVP)和聚乙二醇(PEG)作为钝化剂对铜纳米颗粒进行原位包覆制备了PVP/PEG/Cu复合纳米粒子(CuNP),将其作为导热增强剂引入到PEG中制备了CuNP/PEG固-液相变储能材料(PCMs),并通过FTIR、XRD、DSC以及TGA等表征了CuNP/PEG固-液PCMs的结构及热性能。利用纳米粒子表面的PVP与PEG之间的氢键和空间位阻效应,以及PVP对铜核的保护作用,赋予了铜纳米粒子在PCMs中优异的分散稳定性。结果表明,CuNP的引入能够显著提高复合相变储能材料的导热能力,并能够作为晶核加速材料的结晶行为。当纳米粒子的质量分数为5%时,CuNP/PEG固-液PCMs的相变焓值为157.0 J/g,体系的储热速率、放热速率和结晶速率与纯PEG相比分别提高了34.09%、31.45%和53.33%。 相似文献
13.
14.
Zhenli Liu Lei Yuan Chen Tian Zijun Peng Diyao Zhang Tianpeng Wen Jingkun Yu 《International Journal of Applied Ceramic Technology》2023,20(6):3552-3564
New gel system for preparing mullite porous ceramics by gel-casting freeze-drying was proposed, using pectin as gel source and alumina and silica as raw materials. Directional channels were formed due to sublimation of water during freeze-drying and decomposition of pectin during high temperature sintering to prepare porous mullite ceramic membranes. Effects of solid content on the properties of mullite ceramics in terms of phase composition, microstructure, apparent porosity, bulk density, pore size distribution, compressive strength, thermal conductivity, pressure drop, and gas permeability were investigated. It was found that prepared porous mullite possessed high apparent porosity (56.04%–75.34%), low bulk density (.77–1.37 g/cm3), uniform pore size distribution, relatively high compressive strength (.61–3.03 MPa), low thermal conductivity (.224–.329 W/(m·K)), high gas permeability coefficient (1.11 × 10−10–4.73 × 10−11 m2), and gas permeance (2.18 × 10−2–9.32 × 10−3 mol⋅m−2⋅s−1⋅Pa−1). These properties make prepared lightweight mullite ceramic membranes promising for application in high temperature flue gas filtration. Proposed gel system is expected to provide a new route to prepare porous ceramics with high porosity and directional channels. 相似文献
15.
Yaqun Wu Yuming Tian Yaqiao Wu Mei Qing Ming Feng Dongcheng Ye Baoshun Zhu 《International Journal of Applied Ceramic Technology》2022,19(3):1702-1712
In this work, spodumene/mullite ceramics with low thermal expansion were successfully prepared from spodumene, quartz, talc, and clay. The effects of spodumene content and sintering temperature on the mechanical properties of spodumene/mullite ceramics were investigated. The formed phases were then detected by X-ray diffraction analysis and the microstructures of the sintered bodies were determined by scanning electron microscopy. The interaction effects of the spodumene content and sintering temperature on the apparent porosity and bulk density were studied by response surface methodology. The results demonstrate that an appropriate sintering temperature and spodumene content can promote densification, improve the mechanical properties, and reduce the coefficient of thermal expansion (CTE) of spodumene/mullite ceramics. At the spodumene content of 40 wt.%, the sintering temperature of 1270°C, and the holding time of 90 min, the bending strength was 60.45 MPa, the CTE was 1.73 × 10–6/°C (α[25–650°C] < 2 × 10–6/°C), the bulk density was 2.28 g cm-3, and the apparent porosity was 0.43%. Therefore, this study was of guiding significance for reducing the production cost of spodumene low thermal expansion ceramics and improving product quality. 相似文献
16.
相变材料(PCMs)作为潜热储存和释放的介质,能够解决热能供需矛盾,从而缓解能源危机。纯相变材料具有能量密度高、温度范围广、能量输出稳定性强等优点,但其热导率低和在相变过程发生渗漏的缺点阻碍了其广泛的应用和发展。通过将PCMs与二维纳米片复合,PCMs热导率低和渗漏问题被有效解决。通过在导热机理方面进行详细阐述的基础上,综述了近几年来有关碳基二维纳米片、六方氮化硼(h-BN)纳米片、二硫化钼等复合储热材料的研究进展,为高性能二维纳米片基复合PCMs的设计提供一定的研究思路。 相似文献
17.
A methodology is proposed for the characterization of fire resistive materials with respect to thermal performance models. Typically in these models, materials are characterized by their densities, heat capacities, thermal conductivities, and any enthalpies (of reaction or phase changes). For true performance modelling, these thermophysical properties need to be determined as a function of temperature for a wide temperature range from room temperature to over 1000°C. Here, a combined experimental/theoretical/modelling approach is proposed for providing these critical input parameters. Particularly, the relationship between the three‐dimensional microstructure of the fire resistive materials and their thermal conductivities is highlighted. Published in 2005 by John Wiley & Sons, Ltd. 相似文献
18.
19.
Shuko Akamine Toshio Ogasawara Chiharu Ogawa Takuya Aoki 《Journal of the American Ceramic Society》2022,105(8):5347-5358
Porous MgAl2O4 ceramics designated as THERMOSCATTTM have diffuse reflectance based on the Mie theory. The reflectance greatly suppresses radiation heat transfer and has low emissivity at 1–5 μm wavelengths. Their thermal conductivity has been measured as less than 0.3 W/(m K) at 1500°C. Furthermore, porous MgAl2O4 ceramics have near-zero hemispherical spectral emissivity values at 0.35–5 μm wavelengths. High heat resistance and low emissivity materials in the atmosphere are useful for the innermost layer of industrial furnaces to confine energy efficiently. Additionally, this material is useful as a radiation reflectors, such as in stand-off thermal protection systems. This study elucidated the suppression of radiation transfer in porous MgAl2O4 ceramics attributable to low thermal emissivity. Therefore, the thermal insulation performance under radiation heating in vacuum, the emissivity validity evaluation of low-emissivity porous materials using finite element analysis, and microstructure effects on radiation heating performance and mechanical properties were investigated. 相似文献
20.
Enhancement of thermal stability-insulation performance of hyper porous materials is the premier issue to design of novel porous thermal protection systems. Boron-containing monolithic novolac xerogels (BCNXs) were synthesized using sol–gel networking of novolac resin with hexamethylenetetramine (HMTA) and boric acid at the solvent saturated vapor atmosphere (SSVA). The aim was to elucidate the effect of higher crosslinking density and thermal stable boron containing chemical bonds on the microstructure, thermal conductivity, and thermal oxidation stability of novolac xerogels. The results of FESEM and BET analysis showed that the microstructural characteristics of xerogels are significantly depend on the HMTA and boric acid concentration. The thermogravimetric results were analyzed using characteristic kinetic temperature (CKT)-characteristic kinetic temperature range (CKTR) approximations. The effect of micromorphology of xerogels on the thermal conductivity was investigated. The effective thermal conductivity of samples were in the range of 0.031–0.048 W/m K. 相似文献