首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Effect of sole Y2O3 additive on the nitridation behavior of silicon powder was systematically studied using thermo gravimetry, differential thermal analysis, particle size analysis, X-ray diffraction analysis, X-ray photoelectron spectroscopy, scanning electron microscope and thermodynamic analysis in this paper. The thermo gravimetry results showed that Y2O3 additive can significantly decrease the initial nitriding temperature and increase the nitriding rate. This phenomenon can be attributed to the much lower reaction temperature of the silica film and Y2O3 additive than that of the silica film and silicon. In addition, Y2O3 additive has little effect on the nitridation of silicon powder at 1300°C. However, it can obviously enhance the nitridation of silicon powder and the formation of β-Si3N4 at 1400°C, which is evidenced by the fact that the overall conversion increases from 58.1% to 100% and the fraction of β-Si3N4 in generated Si3N4 increases from 7.9% to 68.2% with increasing the content of Y2O3 additive from 0 to 10 wt%.  相似文献   

2.
《Ceramics International》2016,42(6):7072-7079
The catalytic effect of ytterbium oxide (Yb2O3) on the nitriding reaction of Si compacts was investigated. Si powder mixtures containing Yb2O3 were prepared and nitrided in the form of compacts with a multi-step heating schedule over the range of 1200 °C–1450 °C. The nitriding profiles of the powder mixture with increasing temperature indicated that Yb2O3 clearly promoted the nitridation of Si compacts at 1200 °C compared with the pure Si compact containing no additives. The critical role of Yb2O3 on the nitridation of Si, was elucidated that Yb2O3 promotes the loss of initial SiO2 of the raw Si powder via the measurement of the weight changes at low temperature (1100 °C) and thermogravimetric analysis under N2 atmosphere. It was also found that the β-ratio of fully nitrided Si was closely related to the intermediate degree of nitridation at 1200 °C and 1300 °C.  相似文献   

3.
Sintered reaction‐bonded Si3N4 ceramics with equiaxed microstructure were prepared with TiO2–Y2O3–Al2O3 additions by rapid nitridation at 1400°C for 2 hours and subsequent post‐sintering at 1850°C for 2 hours under N2 pressure of 3 MPa. It was found that α–Si3N4, β–Si3N4, Si2N2O, and TiN phases were formed by rapid nitridation of Si powders with single TiO2 additives. However, the combination of TiO2 and Y2O3–Al2O3 additives led to the formation of 100% β–Si3N4 phase from the nitridation of Si powders at such low temperature (1400°C), and the removal of Si2N2O phase. As a result, dense β–Si3N4 ceramics with equiaxed microstructure were obtained after post‐sintering at high temperature.  相似文献   

4.
《Ceramics International》2020,46(17):27175-27183
The fabrication of silicon nitride (Si3N4) ceramics with a high thermal conductivity was investigated by pressureless sintering at 1800 °C for 4 h in a nitrogen atmosphere with MgO and Y2O3 as sintering additives. The phase compositions, relative densities, microstructures, and thermal conductivities of the obtained Si3N4 ceramics were investigated systemically. It was found that at the optimal MgO/Y2O3 ratio of 3/6, the relative density and thermal conductivity of the obtained Si3N4 ceramic doped with 9 wt% sintering aids reached 98.2% and 71.51 W/(m·K), respectively. EDS element mapping showed the distributions of yttrium, magnesium and oxygen elements. The Si3N4 ceramics containing rod-like grains and grain boundaries were fabricated by focused ion beam technique. TEM observations revealed that magnesium existed as an amorphous phase and that yttrium produced a new secondary phase.  相似文献   

5.
Fully dense SiC bulks with Al2O3 and Al2O3 + Y2O3 sintering additives were prepared by spark plasma sintering and the effect of sintering additives on the hydrothermal corrosion behavior of SiC bulks was investigated in the static autoclave at 400°C/10.3 MPa. The SiC specimen with Al2O3 sintering additive exhibited a higher weight loss and followed a linear law. However, the SiC specimen with Al2O3 + Y2O3 additive exhibited a lower weight loss and followed a parabolic law, indicating that the corrosion kinetic and mechanism were different for these two SiC bulks. Further examination revealed that, a deposited layer was formed on the surface of SiC specimen with Al2O3 + Y2O3 sintering additive after corrosion, which can effectively protect the SiC specimen from further corrosion, and thereby improved the corrosion resistance of the SiC specimen with Al2O3 + Y2O3 sintering additive.  相似文献   

6.
In this work, the effects of Y2O3/MgO ratio on the densification behavior, phase transformation, microstructure evolution, mechanical properties, and thermal conductivity of Si3N4 ceramics were investigated. Densified samples with bimodal microstructure could be obtained by adjusting the ratio of Y2O3/MgO. It was found that a low Y2O3/MgO ratio facilitated the densification of Si3N4 ceramics while a high Y2O3/MgO ratio benefited the phase transformation of Si3N4 ceramics. Best mechanical properties (flexural strength of 875 MPa, and fracture toughness of 8.25 MPa·m1/2, respectively) and optimal thermal conductivity of 98.04W/(m·K) were achieved in the sample fabricated with Y2O3/MgO ratio of 3:4 by sintering at 1900°C for 4 h.  相似文献   

7.
《Ceramics International》2023,49(16):26331-26337
Silicon nitride (Si3N4) ceramics were prepared by gas-pressure sintering using Y2O3–MgSiN2 as a sintering additive. The densification behavior, phase transition, and microstructure evolution were investigated in detail, and the relevance between the microstructure and the performance (including thermal conductivity and mechanical properties) was further discussed. A significant change from a bimodal to a homogeneous microstructure and a decreased grain size occurred with increasing Y2O3–MgSiN2 content. When the small quantity of preformed β-Si3N4 nuclei grew preferentially and rapidly in a short time, an obvious bimodal microstructure was obtained in the sample with 4 mol% and 6 mol% Y2O3–MgSiN2. When more β-Si3N4 nuclei grew at a relatively rapid rate, the sample with 8 mol% Y2O3–MgSiN2 showed a microstructure consisting of numerous abnormally grown β-Si3N4 grains and small grains. When more β-Si3N4 nuclei grew simultaneously and slowly, there was a homogeneous microstructure and smaller grains in the sample containing 10 mol% Y2O3–MgSiN2. Benefitting from the completely dense, significant bimodal microstructure, low grain boundary phase, and excellent Si3N4–Si3N4 contiguity, the sample containing 6 mol% Y2O3–MgSiN2 exhibited great comprehensive performance, with a maximum thermal conductivity and fracture toughness of 84.1 W/(m⋅K) and 8.97 MPa m1/2, as well as a flexural strength of 880.2 MPa.  相似文献   

8.
氮化制度对Si-Al-Al2O3体系合成Sialon的影响   总被引:1,自引:0,他引:1  
以SiC、α-Al2O3微粉、Si粉、Al粉为原料,在1450℃流动氮气中制备Sialon/SiC材料。研究了不同温度保温氮化对Sialon合成的影响。研究结果表明:有部分硅粉残余没有氮化;在1100℃保温氮化的氮化率高于在1150℃、1200℃保温氮化;1100℃保温氮化,残余Si量少、分布均匀,残余硅熔聚现象较轻,利于Sialon的合成。  相似文献   

9.
Belt-like β-Si3N whiskers were successfully synthesized by nitriding of liquid silicon without catalysts at 1500°C by using micron-sized silicon powders within 10 minutes. Silicon droplets formed by the melting of silicon particles greatly facilitates the diffusion of nitrogen. Several whiskers cling together to form a whisker-cluster. The whisker-clustermorphology results from nitriding of separate silicon droplets. The growth of the belt-like β-Si3N4 whisker was controlled by vapor-liquid-solid mechanism. The synthesis of silicon nitride whiskers can be effectively improved by nitriding liquid phase silicon.  相似文献   

10.
The nitridation of elemental silicon powder at 900–1475 °C was studied by X-ray photoelectron spectroscopy (XPS), X-ray excited Auger electron spectroscopy (XAES), XRD, thermal analysis and 29Si MAS NMR. An initial mass gain of about 12% at 1250–1300 °C corresponds to the formation of a product layer about 0·2 μm thick (assuming spherical particles). XPS and XAES show that in this temperature range, the surface atomic ratio of N/Si increases and the ratio O/Si decreases as the surface layer is converted to Si2N2O. XRD shows that above 1300 °C the Si is rapidly converted to a mixture of - and β-Si3N4, the latter predominating >1400 °C. In this temperature range there are only slight changes in the composition of the surface material, which at the higher temperatures regains a small amount of an oxidised surface layer. By contrast, in the interval 1400–1475 °C, the 29Si MAS NMR chemical shift of the elemental Si changes progressively from about −80 ppm to −70 ppm, in tandem with the growth of the Si3N4 resonance at about −48 ppm. Possible reasons for this previously unreported change in the Si chemical shift are discussed. ©  相似文献   

11.
Silicon nitride ceramics were pressureless sintered at low temperature using ternary sintering additives (TiO2, MgO and Y2O3), and the effects of sintering aids on thermal conductivity and mechanical properties were studied. TiO2–Y2O3–MgO sintering additives will react with the surface silica present on the silicon nitride particles to form a low melting temperature liquid phase which allows liquid phase sintering to occur and densification of the Si3N4. The highest flexural strength was 791(±20) MPa with 12 wt% additives sintered at 1780°C for 2 hours, comparable to the samples prepared by gas pressure sintering. Fracture toughness of all the specimens was higher than 7.2 MPa·m1/2 as the sintering temperature was increased to 1810°C. Thermal conductivity was improved by prolonging the dwelling time and adopting the annealing process. The highest thermal conductivity of 74 W/(m∙K) was achieved with 9 wt% sintering additives sintered at 1810°C with 4 hours holding followed by postannealing.  相似文献   

12.
Textured hexagonal boron nitride (h-BN) matrix composite ceramics were prepared by hot pressing using 3Y2O3-5Al2O3 (mole ratio of 3:5) and 3Y2O3-5Al2O3-4MgO (mole ratio of 3:5:4) as liquid phase sintering additives, respectively. During the sintering process with liquid phase environments, platelike h-BN grains were rotated to be perpendicular to the sintering pressure, forming the preferred orientation with the c-axis parallel to the sintering pressure. Both h-BN matrix ceramic specimens show significant texture microstructures and anisotropic mechanical and thermal properties. The h-BN matrix ceramics prepared with 3Y2O3-5Al2O3-4MgO possess higher texture degree and better mechanical properties. While the anisotropy of thermal conductivities of that prepared with 3Y2O3-5Al2O3 is more significant. The phase compositions and degree of grain orientation are the key factors that affect their anisotropic properties.  相似文献   

13.
The synthesis of solid solutions of AlN–SiC was investigated through the combustion reaction between Si3N4, aluminum, and carbon powders and nitrogen gas at pressures ranging from 0.1 to 6.0 MPa. The combustion reaction was initiated locally and then the wave front propagated spontaneously, passing through the cylindrical bed containing the loose powder. In the presence of Si3N4 as a reactant, it was feasible to synthesize solid solutions at an ambient pressure (0.1 MPa). The relationship between nitrogen pressure and full-width at half-maximum of the (110) peak of the product showed that lower pressures produced more-homogeneous solid solutions. Some aspects of formation of the AlN–SiC solid solutions were discussed with special emphasis on the influence of nitrogen pressure and reactant stoichiometry.  相似文献   

14.
Textured AlN‐based ceramics with improved mechanical properties were prepared by hot pressing using Si3N4 and Y2O3 as additives. The introduction of Si3N4–Y2O3 into AlN matrix led to the formation of secondary Y3AlSi2O7N2 and fiber‐like 2Hδ AlN‐polytypoid phases, the partial texture of all crystalline phases, and the fracture mode change from intergranular to transgranular. Consequently, Vickers hardness, fracture toughness and flexural strength of AlN‐based ceramics by the replacement of Y2O3 by Si3N4–Y2O3 increased significantly from 10.4±0.3 GPa, 2.4±0.3 MPa m½ and 333.3±10.3 MPa to 14.2±0.4 GPa, 3.4±0.1 MPa m½ and 389.5±45.5 MPa, respectively.  相似文献   

15.
For low-temperature sintering, mixtures of AlN powder doped with 3.53 mass% Y2O3 and 0–2.0 mass% CaO as sintering additives were pulverized and dispersed in a vertical super-fine grinding mill with very small ZrO2 beads. The particle sizes achieved ranged between 50 and 100 nm after grinding for 90 min. The mixtures were then fired at 1000–1500 °C for 0–6 h under nitrogen gas pressure of 0.1 MPa. All nano-sized powders showed pronounced densification from 1300 °C as revealed by shrinkage measurement. The larger amounts of sintering additives enhanced AlN sintering at lower temperatures. Densified AlN ceramics with very fine and uniform grains of 0.3–0.4 μm were obtained at a firing temperature of 1500 °C for 6 h.  相似文献   

16.
Aluminum nitride powders were synthesized by carbothermal reduction-nitridation method using Al(OH)3, carbon black and Y2O3 as raw materials. The change of phase, microstructure and densification during the AlN synthesis and sintering process were investigated and the effects of Y2O3 was discussed. The results showed that Y2O3 reacted with Al2O3 to form yttrium aluminates of YAlO3 (orthorhombic and hexagonal phases), Y4Al2O9 and Y3Al5O12 at the low temperature of 1350 °C. YAlO3 could firstly be transformed into Y2O3 and then completely into YN when the firing temperature and holding time increased. However, YN could be oxidized into Y2O3 again after the carbon removal at 700 °C in the air atmosphere. There were two ways generating AlN when adding Y2O3 and the possible mechanism was proposed. Y2O3 from YN oxidation favored the densification of AlN ceramics because the liquid had better flowability and distribution in the sintering process at 1800 °C.  相似文献   

17.
以金属铝、镁铝尖晶石和氧化铝及氧化镁细粉为原料,研究了Al-Al2O3-MgO体系混合粉料的氮化反应烧结行为.结果表明Al/Al2O3、原料的种类、烧成温度等对试样的烧结性能有很大的影响.通过选择合适的原料及配比,可得到比较适宜于直接制备MgAlON结合复合材料的基质料.  相似文献   

18.
氮化硅陶瓷由于具有优良的机械性能、化学性能和物理性能而被广泛应用于化工、冶金及航天等领域.催化氮化法制备氮化硅可以有效避免“硅芯”及“流硅”等不完全氮化形为的发生;并促进氮化硅晶须的原位反应合成,改善氮化硅基材料界面的显微结构,提高最终制品的力学性能.本文综述了金属及金属氧化物催化剂催化氮化反应生成氮化硅的最新进展及一维氮化硅的原位生成机理,并在此基础上展望了催化氮化制备氮化硅工艺今后的发展方向.  相似文献   

19.
SiC-Zr2CN composites were fabricated from β-SiC and ZrN powders with 2 vol% equimolar Y2O3-Sc2O3 additives via conventional hot pressing at 2000 °C for 3 h in a nitrogen atmosphere. The electrical and thermal properties of the SiC-Zr2CN composites were investigated as a function of initial ZrN content. Relative densities above 98% were obtained for all samples. The electrical conductivity of Zr2CN composites increased continuously from 3.8 × 103 (Ωm)−1 to 2.3 × 105 (Ωm)−1 with increasing ZrN content from 0 to 35 vol%. In contrast, the thermal conductivity of the composites decreased from 200 W/mK to 81 W/mK with increasing ZrN content from 0 to 35 vol%. Typical electrical and thermal conductivity values of the SiC-Zr2CN composites fabricated from a SiC-10 vol% ZrN mixture were 2.6 × 104 (Ωm)−1 and 168 W/m K, respectively.  相似文献   

20.
Si3N4 ceramics were prepared by gas pressure sintering at 1900°C for 12 h under a nitrogen pressure of 1 MPa using Gd2O3 and MgSiN2 as sintering additives. The effects of the Gd2O3/MgSiN2 ratio on the densification, microstructure, mechanical properties, and thermal conductivity of Si3N4 ceramics were systematically investigated. It was found that a low Gd2O3/MgSiN2 ratio facilitated the thermal diffusivity of Si3N4 ceramics while a high Gd2O3/MgSiN2 ratio benefited the densification and mechanical properties. When the Gd2O3/MgSiN2 ratio was 1:1, Si3N4 ceramics obtained an obvious exaggerated bimodal microstructure and the optimal properties. The thermal conductivity, flexural strength, and fracture toughness were 124 W·m−1·k−1, 648 MPa, and 9.12 MPa·m1/2, respectively. Comparing with the results in the literature, it was shown that Gd2O3-MgSiN2 was an effective additives system for obtaining Si3N4 ceramics with high thermal conductivity and superior mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号