首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZrC, ZrC-30 vol% SiC, and ZrC-30 vol% TiC coatings were fabricated by vacuum plasma spray and the laser ablation behaviors were evaluated by a CO2 laser beam under two heat fluxes (15.9 and 25.5 MW/m2). The phase compositions and microstructures of the coatings after ablation were investigated and the effect of SiC and TiC additives was analyzed. The results showed that the ZrC–SiC coating displayed better ablation resistance compared with the ZrC and ZrC–TiC coatings under 15.9 MW/m2 heat flux. While the ZrC–TiC coating exhibited the improved ablation resistance under 25.5 MW/m2 heat flux. The continuous and integral ZrO2–SiO2 scale provided protective effect for the ZrC–SiC coating. A liquid ZrO2–TiO2 layer which owned self-healing ability was formed for the ZrC–TiC coating in both heat fluxes. However, the state of the formed liquid, like amount, viscosity, evaporation, and decomposition, was influenced by the environment and was vital for the ablation resistance. This work might give a clue for designing ultrahigh-temperature ceramics as potential laser ablation–resistant coating materials.  相似文献   

2.
A volatility diagram of zirconium carbide (ZrC) at 1600, 1930, and 2200°C was calculated in this work. Combining it with the existing volatility diagrams of ZrB2 and SiC, the volatility diagram of a ternary ZrB2‐SiC‐ZrC (ZSZ) system was constructed in order to interpret the oxidation behavior of ZSZ ceramics. Applying this diagram, the formation of ZrC‐corroded and SiC‐depleted layers and the oxidation sequence of each component in ZSZ during oxidation and ablation could be well understood. Most of the predictions from the diagrams are consistent with the experimental observations on the oxidation scale of dense ZrB2‐SiC‐ZrC ceramics/coatings after oxidation at 1600°C or ablation at 1930 and 2200°C. The reasons for the discrepancy are also briefly discussed.  相似文献   

3.
《Ceramics International》2019,45(10):13283-13296
Chemical liquid vapor deposition was adopted to fabricate gradient ZrCSiC modified C/C composites, and the microstructure and ablation resistance were studied. Results displayed the content of SiC decreased from the composites edge to the center but that of ZrC increased, indicating SiC and ZrC ceramics have the gradient distribution in the composites. The gradient composites possessed a low CTE and high thermal conductivity. The low CTE restricted the formation and expansion of defects, which could slow the oxygen diffusion in the composites. The high thermal conductivity could transfer the heat quickly in ablation process, which reduced the heat accumulation on the ablation surface and weakened the thermal erosion. Therefore, the gradient composites possessed an outstanding anti-ablation property at two heat fluxes. Compared with the uniformed distribution composites, the linear and mass ablation rates of the gradient composites decreased by 60.9% and 66.7% at heat flux of 2.38 MW/m2 and decreased by 55.9% and 67.2% at heat flux of 4.18 MW/m2. Because of the gradient distribution, porous ZrO2 coating, ZrO2SiO2 coating and SiO2 coating with SiO2 nanowires were generated on the ablation center, ablation transition zone and ablation edge, respectively. These coatings isolated the sample surface from the flame and inhibited the transport of oxygen into the sample inner.  相似文献   

4.
To improve the ablation resistance of ZrC coating on SiC-coated carbon/carbon composites above 2000 °C, SiC/TiC nanocomposites (SiC/TiC-NCs) powders derived from single-source precursor were incorporated into ZrC coating, denoted as ZrC-SiC/TiC-NCs, via supersonic atmospheric plasma spraying (SAPS). After SAPS, the incorporated SiC/TiC-NCs evolved into TiC/(SiC and ZrxTiyC) embedded in amorphous SiC. The ablation resistance of the ZrC-SiC/TiC-NCs coating was evaluated by oxyacetylene flames with a heat flux of 4.18 MW/m2. For comparison, the ZrC-SiC-NCs coating without Ti modification was seriously damaged due to rapid gas denudation. The good ablation resistance of ZrC-SiC/TiC-NCs coating is mainly attributed to the distinctive “capsule-like” multi-crystalline microstructure of SiC/TiC-NCs. During ablation, TiO2 and ZrxTiyO2, due to the oxidation of TiC and ZrxTiyC, contributed to the formation of Zr-Ti-Si-O glass with high viscosity and low evaporation pressure, improving the ablation resistance.  相似文献   

5.
C/C–ZrC–SiC composites with continuous ZrC–SiC ceramic matrix were prepared by a multistep technique of precursor infiltration and pyrolysis process. Ablation properties of the composites were tested under an oxyacetylene flame at 3000 °C for 120 s. The results show that the linear ablation rate of the composites was about an order lower than that of pure C/C and C/C–SiC composites as comparisons, and the mass of the C/C–ZrC–SiC composites increased after ablation. Three concentric ring regions with different coatings appeared on the surface of the ablated C/C–ZrC–SiC composites: (i) brim ablation region covered by a coating with layered structure including SiO2 outer layer and ZrO2–SiO2 inner layer; (ii) transition ablation region, and (iii) center ablation region with molten ZrO2 coating. Presence of these coatings which acted as an effective oxygen and heat barrier is the reason for the great ablation resistance of the composites.  相似文献   

6.
A C/C-ZrC-SiC composite was successfully prepared by high-solid-loading slurry impregnation combined with polymer infiltration and pyrolysis. The microstructure and ablation behavior of the C/C–ZrC–SiC composite were investigated. ZrC particles were uniformly distributed in the matrix, and the obtained C/C–ZrC–SiC composite had a high density of 2.74 g/cm3. After exposure to oxyacetylene flame with a heat flux of 3.86 MW/m2 for 120 s, the mass and linear ablation rates of the composite were 0.72 ± 0.11 mg/s and 0.52 ± 0.09 µm/s, respectively. The excellent ablation properties of the composite were attributed to the protection of the matrix by a three-layered oxide scale consisting of ZrO2/SiO2-rich/ZrO2-SiO2.  相似文献   

7.
For extending application of TaSi2 in complex coating system, the ablation behavior and thermal protection performance of TaSi2 coating is studied to evaluate its potential applications for anti-ablation protection of C/C composites. TaSi2 coating is prepared by supersonic atmospheric plasma spraying (SAPS) on the surface of SiC coated carbon/carbon (C/C) composites. Phase variation and microstructure are characterized by XRD and SEM, respectively. During the ablation process, the coating is quickly oxidized to SiO2 and Ta2O5 accompanied by a lot of heat consumption. The linear and mass ablation rates are 0.9?µm?s?1 and ??0.4?mg?s?1 after ablation for 80?s, respectively Results show that the prepared coating possesses optimal ablation performance under the heat flux of 2.4?MW/m2. Moreover, the TaSi2 coating and SiC inner coating have good chemical and physical compatibility during the ablation process. Therefore, the excellent performance of TaSi2 coating during the ablation process makes it a candidate for anti-ablation protection for C/C composites.  相似文献   

8.
To improve the ablation resistance of ZrC coating, MoSi2 incorporated ZrC composite coatings were fabricated by vacuum plasma spray. The ablation resistance of the composite coatings was evaluated using a plasma jet with a heat flux of 1.94?MW/m2. The phase compositions and microstructures of the coatings before and after ablation were investigated, and the ablation mechanisms and effect of MoSi2 were analyzed based on thermal dynamics and microstructure changes. Results showed that MoSi2 addition could improve the ablation resistance of ZrC coating by means of decreasing the surface temperature and changing the microstructure of the oxidation layer. Si derived from the decomposition of MoSi2, which occurred within coating, was beneficial to maintain the thickness and integrity of the SiO2 layer and reduce the oxygen pressure beneath. The thickness of the SiO2 layer was related to the formation rate (Vf) and the consumption rate (Vc) of SiO2. The diffusion of Si was in favor of increasing the value of Vf. MoSi2 could be one choice to improve the ablation resistance of the ZrC coating.  相似文献   

9.
To protect the carbon/carbon (C/C) composites from oxidation, an outer ultra‐high‐temperature ceramics (UHTCs) HfB2‐SiC coating was prepared on SiC‐coated C/C composites by in situ reaction method. The outer HfB2‐SiC coating consists of HfB2 and SiC, which are synchronously obtained. During the heat treatment process, the formed fluid silicon melt is responsible for the preparation of the outer HfB2‐SiC coating. The HfB2‐SiC/SiC coating could protect the C/C from oxidation for 265 h with only 0.41 × 10?2 g/cm2 weight loss at 1773 K in air. During the oxidation process, SiO2 glass and HfO2 are generated. SiO2 glass has a self‐sealing ability, which can cover the defects in the coating, thus blocking the penetration of oxygen and providing an effective protection for the C/C substrate. In addition, SiO2 glass can react with the formed HfO2, thus forming the HfSiO4 phase. Owing to the “pinning effect” of HfSiO4 phase, crack deflecting and crack termination are occurred, which will prevent the spread of cracks and effectively improve the oxidation resistance of the coating.  相似文献   

10.
Cf/ZrC‐SiC composites with a density of 2.52 g/cm3 and a porosity of 1.68% were fabricated via reactive melt infiltration (RMI) of Si into nano‐porous Cf/ZrC‐C preforms. The nano‐porous Cf/ZrC‐C preforms were prepared through a colloid process, with a ZrC “protective coating” formed surrounding the carbon fibers. Consequently, highly dense Cf/ZrC‐SiC composites without evident fiber/interphase degradation were obtained. Moreover, abundant needle‐shaped ZrSi2 grains were formed in the composites. Benefiting from this unique microstructure, flexural strength, and elastic modulus of the composites are as high as 380 MPa and 61 GPa, respectively, which are much higher than Cf/ZrC‐SiC composites prepared by conventional RMI.  相似文献   

11.
In this study, an effort has been made to improve the mechanical, thermal, and ablation performance of carbon-phenolic (C-Ph) composites. The ZrO2, SiC, and ZrO2/SiC hybrid fillers were synthesized using sol-gel method followed by individual incorporation into C-Ph composites. The thermal stability and flexural strength of these C-Ph composites were analyzed using thermogravimetry analysis and three-point bending test, respectively. A significant improvement in the flexural strength and modulus of the reinforced C-Ph composites was observed and also exhibited the higher thermal stability. The oxyacetylene flame test was conducted to measure the ablation behavior of these filler reinforced C-Ph composites under a heat flux of 4.0 MW/m2 for 60 seconds. ZrO2/SiC0.5 reinforcement in the C-Ph composite decreased the linear and mass ablation rates by 46% and 22%, respectively when compared with pure C-Ph composite. The surface morphology analysis revealed that the burnt composite covered with the ZrC ceramic phase and SiO2 bubble-like structure, which could have improved the ablation resistance of composites. These results were found well within the acceptable range when using the surface energy dispersive spectroscopy and X-ray diffraction analysis.  相似文献   

12.
In this study, C/C–SiC–ZrC composites coated with SiC were prepared by precursor infiltration pyrolysis combined with reactive melt infiltration. The pyrolysis behavior of the hybrid precursor was investigated using thermal gravimetric analysis-differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy techniques. The microstructure and ablation behavior of the composites were also investigated. The results indicate that the composites exhibit an interesting structure, wherein a ceramic coating composed of SiC and a small quantity of ZrC covers the exterior of the composites, and the SiC–ZrC hybrid ceramics are partially embedded in the matrix pores and distributed around the carbon fibers as well. The composites exhibit good ablation resistance with a surface temperature of over 2300 °C during ablation. After ablation for 120 s, the mass and linear ablation rates of the composites are 0.0026 g/s and 0.0037 mm/s, respectively. The great ablation resistance of the composites is attributed to the formation of a continuous phase of molten SiO2 containing SiC and ZrO2, which seals the pores of the composites during ablation.  相似文献   

13.
ZrC-TiC coatings were fabricated by vacuum plasma spray and their ablation resistance were evaluated and compared with ZrC-SiC coating by a plasma flame with a heat flux of 4.02 MW/m2. The microstructure and phase compositions of the as-sprayed and ablated coatings were characterized and the function of TiC addition on the ablation resistance was investigated. The results showed that the ablation resistance of the ZrC-TiC coating was much better than that of the ZrC-SiC coating under the present ablation conditions. The decrease of surface temperatures with the increasing of TiC content were observed. (Zr, Ti)O2 eutectic phase in liquid state was observed. The low vapor and decomposition pressures of TiO2, combined with the formation of (Zr, Ti)O2 liquid contributed to the excellent ablation resistance of the ZrC-TiC coating. This work affirmed that TiC could be an ideal addition to improve the ablation resistance of the ZrC coating in harsh environment above 2000 °C.  相似文献   

14.
ZrC–SiC powders are synthesized by high‐temperature pyrolysis of hybrid liquid precursors, which are prepared from organic Zr‐containing precursor (PZC) and liquid polycarbosilane (LPCS). Due to the excellent miscibility between PZC and LPCS, the hybrid liquid precursors are formed by dissolving PZC into LPCS without adding organic solvent. The viscosity and elemental content of Zr and Si of the hybrid precursors are readily adjustable by controlling the LPCS/PZC mass ratio. SEM and TEM observations reveal that the ZrC–SiC powders pyrolyzed at 1550°C exhibit spherical morphology with characteristic dimension of less than 60 nm, and the two phases are uniformly distributed in composite powders. The advantage of the ZrC–SiC powders synthesized by this novel method is demonstrated by investigating the oxidation behavior of powders with different amount of SiC and ZrC. Below 700°C, ZrC quickly oxidizes to generate an almost nonprotective ZrO2 scale, whereas at ~ 1000°C, dense and protective SiO2 forms that improves the oxidation resistance of the ZrC–SiC composite powders.  相似文献   

15.
C/C–ZrC–SiC composites were prepared by precursor infiltration and pyrolysis process using a mixture solution of organic zirconium-containing polymer and polycarbosilane as precursors. Porous carbon/carbon (C/C) composites with density of 0.92, 1.21 and 1.40 g/cm3 were used as preforms, and the effects of porous C/C density on the densification behavior and ablation resistance of C/C–ZrC–SiC composites were investigated. The results show that the C/C preforms with a lower density have a faster weight gain, and the obtained C/C–ZrC–SiC composites own higher bulk density and open porosity. The composites fabricated from the C/C preforms with a density of 1.21 g/cm3 exhibit better ablation resistance with a surface temperature of over 2400 °C during ablation. After ablation for 120 s, the linear and mass ablation rates of the composites are as low as 1.02 × 10−3 mm/s and −4.01 × 10−4 g/s, respectively, and the formation of a dense and continuous coating of molten ZrO2 solid solution is the reason for their great ablation resistance.  相似文献   

16.
《Ceramics International》2017,43(15):12005-12012
To improve the ablation resistance of SiC coating, HfB2-SiC coating was prepared on SiC-coated carbon/carbon (C/C) composites by in-situ reaction method. Owing to the penetration of coating powders, there is no clear boundary between SiC coating and HfB2-SiC coating. After oxyacetylene ablation for 60 s at heat flux of 2400 kW/m2, the mass ablation rate and linear ablation rate of the coated C/C composites were only 0.147 mg/s and 0.267 µm/s, reduced by 21.8% and 60.0%, respectively, compared with SiC coated C/C composites. The good ablation resistance was attributed to the formation of multiple Hf-Si-O glassy layer including SiO2, HfO2 and HfSiO4.  相似文献   

17.
《Ceramics International》2022,48(20):30338-30347
A novel network interlacing ZrC-VC ceramic coating was prepared by a pioneering spillover permeation. With the increase of Zr content in the blind vias, the content of ZrC in the coating and the density of the coating all decrease. The density of the coating on C/C–ZrC–SiC substrate is obviously higher than that on C/C substrate. The linear ablation rate of the novel ceramic coated C/C–ZrC–SiC composites was ?0.06 μm/s with about 20 and 1.56 times reduction than C/C composites and C/C–ZrC–SiC composites respectively. The improved ablation resistance was attributed to a dense honeycomb ZrO2 layer filled with liquid vanadium oxide in the ablation center and the improved thermal radiation.  相似文献   

18.
Y2Hf2O7 possesses low thermal conductivity and high melting point, which make it promising for a new anti-ablation material. For evaluating the thermal stability and the potential applications of Y2Hf2O7 on anti-ablation protection of C/C composites, Y2Hf2O7 ceramic powder was synthesized by solution combustion method and Y2Hf2O7 coating was prepared on the surface of SiC coated C/C composites using SAPS. Results shown that the coating exhibits good ablation resistance under the heat flux of 2.4?MW/m2 with the linear and mass ablation rates are 0.16?μm?s?1 and ?0.028?mg?s?1, respectively, after ablation for 40?s. With the prolonging of the ablation time, the increasing thermal stress causes the increase of cracks. Moreover, the chemical erosion from SiO2 and the physical volatilization of low temperature molten products aggravate failure of the Y2Hf2O7 coating.  相似文献   

19.
Based on the investigation of ablation behavior and thermal stress of the monolayered ZrC-SiC coatings with different SiC amounts, an alternate coating consisting of 4 sublayers with 10 and 70 vol.% SiC was prepared on SiC-coated carbon/carbon (C/C) composites through plasma spraying technique. Ablation tests were carried out under oxyacetylene torch with a heat flux of 2.38 MW/m2. The alternate coating could offer 90 s ablation shield for C/C composites, providing superior ablation properties than all monolayered coatings. The improved ablation resistance is mostly induced by the fact that the outmost scale with abundant ZrO2 particles was able to better endure the mechanical denudation from the torch. Moreover, due to the indirect contact with torch, the innermost sublayers were placed into relatively mild environment, thereby most of Si-based oxides could be retained and further hinder oxygen transport inward during ablation.  相似文献   

20.
《Ceramics International》2020,46(12):20163-20172
A double-layer coating composed of MoSi2–SiO2–SiC/ZrB2–MoSi2–SiC was designed and successfully constructed by a novel combination of precursor pyrolysis assisted sintering and rapid sintering to improve the ablation resistance of SiOC ceramic modified carbon fiber needled felt preform composites (CSs). The ZrB2–MoSi2–SiC inner layer coating was in relatively uniform distribution in the zone of 0–3 mm from the surface of CSs through the slurry/precursor infiltration in vacuum and SiOC precursor pyrolysis assisted sintering, which played a predominant role in improving oxidation and ablation resistance and maintaining the morphology of CSs. The MoSi2–SiO2–SiC outer layer coating was prepared by the spray and rapid sintering to further protect CSs from high-temperature oxidation. The ablation resistance of CSs coated with double-layer coating was evaluated by an oxygen-acetylene ablation test under the temperature of 1600–1800 °C with different ablation time of 1000 and 1500 s. The results revealed that the mass recession rates increased with the rise of ablation temperature and extension of ablation time, ranging from 0.47 g/(m2·s) to 0.98 g/(m2·s) at 1600–1800 °C for 1000 s and from 0.72 g/(m2·s) to 0.86 g/(m2·s) for 1000–1500 s at 1700 °C, while the linear recession rates showed negative values at 1700 °C due to the formation of oxides, such as SiO2 and ZrO2. The ablation mechanism of the double-layer coating was analyzed and found that a SiO2–ZrO2–Mo4.8Si3C0.6 oxidation protection barrier would be formed during the ablation process to prevent the oxygen diffusion into the interior CSs, and this study provided a novel and effective way to fabricate high-temperature oxidation protective and ablation resistant coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号