首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The crystal structure, electromechanical properties, and electrocaloric effect (ECE) in novel lead‐free (Bi0.5K0.5)TiO3‐La(Mg0.5Ti0.5)O3 ceramics were investigated. A morphotropic phase boundary (MPB) between the tetragonal and pseudocubic phase was found at x = 0.01‐0.02. In addition, the relaxor properties were enhanced with increasing the La(Mg0.5Ti0.5)O3 content. In situ high‐temperature X‐ray diffraction patterns and Raman spectra were characterized to elucidate the phase transition behavior. The enhanced ECE (ΔT = 1.19 K) and piezoelectric coefficient (d33 = 103 pC/N) were obtained for x = 0.01 at room temperature. Meanwhile, the temperature stability of the ECE was considered to be related to the high depolarization temperature and relaxor characteristics of the Bi0.5K0.5TiO3‐based ceramics. The above results suggest that the piezoelectric and ECE properties can be simultaneously enhanced by establishing an MPB. These results also demonstrate the great potential of the studied systems for solid‐state cooling applications and piezoelectric‐based devices.  相似文献   

2.
Lead‐free 0.985[(0.94?x)Bi0.5Na0.5TiO3–0.06BaTiO3xSrTiO3]–0.015LiNbO3 [(BNT–BT–xST)–LN, x=0‐0.05] piezoelectric ceramics were prepared using a conventional solid‐state reaction method. It was found that the long‐range ferroelectric order in the unmodified (BNT–BT)–LN ceramic was disrupted and transformed into the ergodic relaxor phase with the ST substitution, which was well demonstrated by the dramatic decrease in remnant polarization (Pr), coercive field (Ec), negative strain (Sneg) and piezoelectric coefficient (d33). However, the degradation of the ferroelectric and piezoelectric properties was accompanied by a significant increase in the usable strain response. The critical composition (BNT–BT–0.03ST)–LN exhibited a maximum unipolar strain of ~0.44% and corresponding normalized strain, Smax/Emax of ~880 pm/V under a moderate field of 50 kV/cm at room temperature. This giant strain was associated with the coexistence of the ferroelectric and ergodic relaxor phases, which should be mainly attributed to the reversible electric‐field‐induced transition between the ergodic relaxor and ferroelectric phases. Furthermore, the large field‐induced strain showed relatively good temperature stability; the Smax/Emax was as high as ~490 pm/V even at 120°C. These findings indicated that the (BNT–BT–xST)–LN system would be a suitable environmental‐friendly candidate for actuator applications.  相似文献   

3.
溶胶-凝胶法合成(Na0.5Bi0.5)TiO3微粉   总被引:1,自引:0,他引:1  
以钛酸四丁酯、硝酸铋、醋酸钠和冰醋酸为原料,利用溶胶-凝胶工艺得到透明凝胶,经干燥后煅烧成(Na0.5Bi0.5)TiO3微粉。通过对溶胶体系水/醇盐的摩尔比、初始pH值及胶凝温度对(Na0.5Bi0.5)TiO3凝胶体系溶胶-凝胶形成过程影响的研究,发现水/醇盐比R在35≤R≤60,pH在2.2~3.5,反应温度在40~60℃时,能够得到透明的溶胶;通过TG-DTA、SEM、X-ray等分析手段对(Na0.5Bi0.5)TiO3粉体进行测试,表明在650℃合成1h可以得到单一钙钛矿(Na0.5Bi0.5)TiO3晶体;采用TEM对(Na0.5Bi0.5)TiO3干凝胶粉体分析其粒径大小约为10nm。  相似文献   

4.
x% mol MnO2‐doped Ba0.925Ca0.075TiO3 ceramics (abbreviated as BCT‐Mnx, x=0‐1.5) were synthesized by conventional solid‐state reaction method. The effects of MnO2 addition and (Ba+Ca)/Ti mole ratio (A/B ratio) on the microstructure and electrical properties of the ceramics were investigated. The internal bias filed Ei was determined from the asymmetrical polarization hysteresis loops and found to increase with the doping concentration of MnO2. High mechanical quality factors (Qm>1200) and low dielectric loss (tanδ<0.5%) were found in the BCT‐Mn0.75 and BCT‐Mn1.0 ceramics with Ei>3 kV/cm, meanwhile, the piezoelectric and electromechanical properties were found to decrease compared with the pure BCT, exhibiting a typical characteristic of “hard” behavior. Of particular interest is that the microstructure of BCT‐Mn0.75 ceramics could be controlled by changing the A/B ratio, where enhanced piezoelectric coefficient d33 on the order of 190 pC/N was obtained in the BCT‐Mn0.75 ceramics with A/B=1.01 due to its fine‐grained microstructure, with yet high Qm, being on the order of 1000. The high d33 and Qm in MnO2‐doped BCT ceramics make it a promising candidate for high power piezoelectric applications.  相似文献   

5.
High pyroelectric performance and good thermal stability of pyroelectric materials are desirable for the application of infrared thermal detectors. In this work, enhanced pyroelectric properties were achieved in a new ternary (1?x)(0.98(Bi0.5Na0.5)(Ti0.995Mn0.005)O3–0.02BiAlO3)–xNaNbO3 (BNT–BA–xNN) lead‐free ceramics. The effect of NN addition on the microstructure, phase transition, ferroelectric, and pyroelectric properties of BNT–BA–xNN ceramics were investigated. It was found that the average grain size decreased as x increased to 0.03, whereas increased with further NN addition. The pyroelectric coefficient p at room temperature (RT) was significantly increased from 3.87 × 10?8Ccm?2K?1 at = 0 to 8.45 × 10?8Ccm?2K?1 at = 0.03. The figures of merit (FOMs), Fi, Fv and Fd, were also enhanced with addition of NN. Because of high p (7.48 × 10?8Ccm?2K?1) as well as relatively low dielectric permittivity (~370) and low dielectric loss (~0.011), the optimal FOMs at RT were obtained at = 0.02 with Fi = 2.66 × 10?10 m/V, Fv = 8.07 × 10?2 m2/C, and Fd = 4.22 × 10?5 Pa?1/2, which are superior to other reported lead‐free ceramics. Furthermore, the compositions with  0.03 exhibited excellent temperature stability in a wide temperature range from 20 to 80°C because of high depolarization temperature (≥110°C). Those results unveil the potential of BNT–BA–xNN ceramics for infrared detector applications.  相似文献   

6.
Ferroelectric phase coexistence was constructed in (1?x)BaTiO3xCaSnO3 lead‐free ceramics, and its relationship with the piezoelectricity of the materials was investigated to ascertain potential factors for strong piezoelectric response. It is found that the addition of CaSnO3 caused a series of phase transitions in the (1?x)BaTiO3xCaSnO3 ceramics, and a ferroelectric coexistence of rhombohedral, orthorhombic, and tetragonal phases is formed at = 0.08, where the ceramics exhibit the lowest energy barrier and consequently facilitate the polarization rotation and extension, resulting in the optimal piezoelectricity of d33 and kp values of 550 pC/N and 0.60, respectively. Our study provides an intuitive insight to understand the origin of high piezoelectricity in the ceramics with the coexistence of multiferroelectric phases.  相似文献   

7.
The structures and functional properties of Na0.5Bi0.5TiO3xKNbO3 (NBT‐xKN) solid solutions, with x in the range from 0.01 to 0.09, were investigated using a combination of high‐resolution synchrotron X‐ray powder diffraction (SXPD) and ferroelectric property measurements. For low KN contents, an irreversible transformation from cubic to rhombohedral phases was observed after the application of a high electric field, indicating that the polar nanoregions (PNRs) in the unpoled state can be transformed into metastable long‐range ordered ferroelectric domains in the poled state. In contrast, the near‐cubic phase of the unpoled ceramics was found to be remarkably stable and was retained on cooling to a temperature of ?175°C. Upon heating, the field‐induced metastable ferroelectric rhombohedral phase transformed back to the nanopolar cubic state at the structural transformation temperature, TST, which was determined as approximately 225°C and 125°C for KN contents of 3% and 5% respectively. For the field‐induced rhombohedral phase in the poled specimens, the pseudo‐cubic lattice parameter, ap, exhibited an anomalous reduction while the inter‐axial angle increased towards a value of 90° on heating, resulting in an overall increase in volume. The observed structural changes were correlated with the results of temperature‐dependent dielectric, ferroelectric and depolarization measurements, enabling the construction of a phase diagram to define the stable regions of the different ferroelectric phases as a function of composition and temperature.  相似文献   

8.
The piezoelectric and ferroelectric properties of 0.76(Bi0.5Na0.5)TiO3–0.04(Bi0.5Li0.5)TiO3–0.2(Bi0.5K0.5)TiO3 (abbreviated as 0.76BNT–0.04BLT–0.2BKT) ceramics were investigated to clarify the optimal sintering temperature, and the vibration characteristics were examined for a compression‐mode accelerometer assembly in which 0.76BNT–0.04BLT–0.2BKT ceramics sintered at the optimized temperature served as the piezoelectric elements. The increase in the grain size of the 0.76BNT–0.04BLT–0.2BKT ceramics with the sintering temperature provides a beneficial contribution to the piezoelectric coefficient; however, it detrimentally contributes to the depolarization temperature. The charge sensitivity of the prototype accelerometers was evaluated with changes in the seismic mass and the layer number of the piezoceramics. The deviation between the theoretical and measured values of charge sensitivity was less than 10%.  相似文献   

9.
A new type of (0.7?x)Bi0.5Na0.5TiO3‐0.3Sr0.7Bi0.2TiO3xLaTi0.5Mg0.5O3 (LTM1000x,= 0.0, 0.005, 0.01, 0.03, 0.05 wt%) lead‐free energy storage ceramic material was prepared by a combining ternary perovskite compounds, and the phase transition, dielectric, and energy storage characteristics were analyzed. It was found that the ceramic materials can achieve a stable dielectric property with a large dielectric constant in a wide temperature range with proper doping. The dielectric constant was stable at 2170 ± 15% in the temperature range of 35‐363°C at LTM05. In addition, the storage energy density was greatly improved to 1.32 J/cm3 with a high‐energy storage efficiency of 75% at the composition. More importantly, the energy storage density exhibited good temperature stability in the measurement range, which was maintained within 5% in the temperature range of 30‐110°C. Particularly, LTM05 show excellent fatigue resistance within 106 fatigue cycles. The results show that the ceramic material is a promising material for temperature‐stable energy storage.  相似文献   

10.
Defect greatly affects the microscopic structure and electrical properties of perovskite piezoelectric ceramics, but the microscopic mechanism of defect‐driven macroscopic properties in the materials is not still completely comprehended. In this work, K0.5Na0.5NbO3+x mol CuSb2O6 lead‐free piezoelectric ceramics were fabricated by a solid‐state reaction method and the defect‐driven evolution of piezoelectric and ferroelectric properties was studied. The addition of CuSb2O6 induces the formation of dimeric (DC1) and trimeric (DC2) defect dipoles. At low doping concentration of CuSb2O6 (0.5‐1.0 mol%), DC1 and DC2 coexist in the ceramics and harden the ceramics, inducing a constricted double P‐E loop and high Qm of 895 at x=0.01. However, DC2 becomes more dominant in the ceramics with high concentration of CuSb2O6 (≥1.5 mol%) and thus leads to softening behavior of piezoelectricity and ferroelectricity as compared to the ceramic with x=0.01, giving a single slanted P‐E loop and relatively low Qm of 206 at x=0.025. All ceramics exhibit relatively high d33 of 106‐126 pC/N. Our study shows that the piezoelectricity and ferroelectricity of K0.5Na0.5NbO3 ceramics can be tailored by controlling defect structure of the materials.  相似文献   

11.
Lead‐free perovskite (1‐x)(K0.48Na0.48Li0.04)Nb0.95Sb0.05O3x(Bi0.5Na0.5)HfO3 piezoelectric ceramics were prepared by a traditional ceramic fabrication method. An investigation was conducted to assess the effects of (Bi0.5Na0.5)HfO3 content on the crystal structure, microstructure, phase‐transition temperatures, and piezoelectric properties of the ceramics. The X‐ray diffraction results, combined with the temperature dependence of dielectric properties, revealed that the ceramics experienced a structural transition from an orthorhombic phase to a tetragonal phase with the addition of (Bi0.5Na0.5)HfO3, and a coexistence of orthorhombic and tetragonal phases was identified in the composition range of 0.005≤x≤0.015. An obviously improved piezoelectric activity was obtained for the ceramics with compositions near the orthorhombic‐tetragonal phase boundary, among which the composition x=0.005 exhibited the maximum values of piezoelectric constant d33, and planar and thickness electromechanical coupling coefficients (kp and kt) of 246 pC/N, 0.435, and 0.554, respectively. Furthermore, the Curie temperature of the ceramics was found decreasing with the increase in (Bi0.5Na0.5)HfO3 content, but still maintaining above 300°C for the phase boundary compositions. These results indicate that the ceramics are promising lead‐free candidate materials for piezoelectric applications.  相似文献   

12.
利用固相法制备了(Na1-xKx)0.5Bi0.5TiO3系压电陶瓷,研究其中Bi3 、Na 、K 离子的挥发对其性能的影响。研究结果表明Bi3 的挥发性对样品的性能影响较大,而Na 、K 离子相对较小。  相似文献   

13.
Lead‐free 0.99[(1?x)Bi0.5(Na0.80K0.20)0.5TiO3?xBiFeO3]–0.01Ta (BNKT20–100xBF–1Ta) lead‐free piezoelectric ceramics were fabricated through conventional solid state sintering method. Results showed that change of BF content in the BNKT20–100xBF–1Ta induced a phase transition from ferroelectric to ergodic relaxor phase with a significant disruption of the long‐range ferroelectric order. A large electric‐field‐induced strain of 0.36% (at 80 kV/cm driving field, corresponding to a large signal of ~450 pm/V) which is derived from a reversible field‐induced ergodic relaxor to ferroelectric phase transformation, was obtained in the composition with x=0.01 near the ferroelectric‐ergodic relaxor phase boundary. Moreover, an attractive property for application in nonlinear actuators demanding enhanced thermal stability was obtained in this material, which showed a temperature‐insensitive strain characteristic in the temperature range from room temperature to 100°C.  相似文献   

14.
Piezoelectric knocking sensors with a dense microstructure were fabricated at 960°C for 2 hours using various CuO‐added (Na0.5K0.5)NbO3 (NKN)‐based piezoelectric ceramics. The practical sensitivity (SP) of the knocking sensor, which is the ability to detect the knocking of a car engine, was influenced by the g33 × kp value of the piezoelectric ceramics, indicating that the g33 × kp can be considered a figure of merit of the piezoelectric ceramics used in the knocking sensor. The knocking sensor synthesized using the CuO‐added 0.95(Na0.5K0.5)(Nb0.95Sb0.05)O3–0.05CaTiO3 (CNKNS–CT) ceramic, which showed a g33 of 25.7 Vm/N and kp of 0.46, exhibited a high SP of 119 mV/g at the resonance frequency. The SP of the commercial knocking sensor, which was synthesized using the Pb(Zr,Ti)O3 (PZT)‐based ceramic, was 112 mV/g at the resonance frequency. Hence, the knocking sensor fabricated using the CNKNS–CT piezoelectric ceramic can be used to replace the commercial PZT‐based knocking sensor.  相似文献   

15.
采用传统陶瓷制备方法,制备了A位元素非化学计量无铅压电陶瓷0.79(Bi0.5Na0.5)tTiO3–0.18(Bi0.5K0.5)tTiO3–0.03BitFeO3(t=0.95~1.05)。研究了A位元素非化学计量对该体系陶瓷微观结构、压电性能的影响,同时通过测量不同外加应力下压电应变常数(d33),研究了影响d33和径向机电耦合系数(kp)的不同机理。结果表明:A位元素缺乏较多时,析出第二相。kp随A位元素过量与不足的增加而减少,d33随A位元素过量的增加基本不变,随A位元素不足的增加而减少。采用极化相位角(θmax)衡量陶瓷极化程度,发现kp随θmax增加而增加,d33随θmax增加变化不明显。d33在低于临界应力时基本不变,当应力高于临界应力后,随应力增加而下降。压电陶瓷中的应力场对畴壁运动与弹性偶极子的作用是影响d33的作用机理之一。  相似文献   

16.
(Bi0.5Na0.5)TiO3–BiAlO3 lead‐free materials exhibit excellent ferroelectric properties, but its depolarization temperature is relatively low which is the major obstacle limiting the material's practical application. In this study, the effects of Manganese (Mn) modification on the microstructure, ferroelectric properties and depolarization behavior of 0.96(Bi0.5Na0.5)(Ti1?xMnx)O3–0.04BiAlO3 ceramics were investigated. It was found that the average grain size was enlarged and ferroelectric properties were enhanced with small Mn addition, meanwhile the tangent loss decreased. The remnant polarization (Pr) of the samples reached an optimal value (~41 μC/cm2) as Mn content increased up to 0.7 mol%, whereas further addition resulted in the decrease in Pr. Moreover, appropriate Mn addition (x=0.7%) can improve the depolarization temperature from 140°C to 161°C determined from thermally stimulated depolarization currents measurement.  相似文献   

17.
《Ceramics International》2016,42(14):15664-15670
Sodium bismuth titanate (BNT) nanopowder of molar composition 50/50 (Na0.5Bi0.5TiO3) was prepared by a sol-gel processing method. The structure and microstructure of the precursor gel as well as the ferroelectric, pyroelectric, dielectric and piezoelectric properties of the BNT were studied. BNT crystallized in the rhombohedra perovskites structure Na0.5Bi0.5TiO3 was obtained from the precursor gel by heating at 700 °C for 2 h in air. The BNT ceramic at 1100 °C sintering temperature present high crystallinity, good dielectric properties at 1 kHz (ε′=885, tan δ=0.03, Tc=370 °C), piezoelectric properties (k33=0.39, c33=105 GPa, e33=12.6 C/m2, d33=120 pC/N), high remnant polarization (Pr=47 μC/cm2) and pyroelectric coefficient (p=707 μC/m2 K) and low coercive field (Ec=55 kV/cm). Hence, the BNT prepared by sol-gel method could be used for silicon based memory device application where a low synthesis temperature is a key requirement.  相似文献   

18.
The relationship between the piezoelectric properties and the structure/microstructure for 0.05Bi(Mg2/3Nb1/3)O3‐(0.95‐x)BaTiO3xBiFeO3 (BBFT,= 0.55, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics has been investigated. Scanning electron microscopy revealed a homogeneous microstructure for < 0.75 but there was evidence of a core‐shell cation distribution for = 0.75 which could be suppressed in part through quenching from the sintering temperature. X‐ray diffraction (XRD) suggested a gradual structural transition from pseudocubic to rhombohedral for 0.63 < < 0.70, characterized by the coexistence of phases. The temperature dependence of relative permittivity, polarization‐electric field hysteresis loops, bipolar strain‐electric field curves revealed that BBFT transformed from relaxor‐like to ferroelectric behavior with an increase in x, consistent with changes in the phase assemblage and domain structure. The largest strain was 0.41% for x = 0.63 at 10 kV/mm. The largest effective piezoelectric coefficient (d33*) was 544 pm/V for = 0.63 at 5 kV/mm but the largest Berlincourt d33 (148 pC/N) was obtained for x = 0.70. We propose that d33* is optimized at the point of crossover from relaxor to ferroelectric which facilitates a macroscopic field induced transition to a ferroelectric state but that d33 is optimized in the ferroelectric, rhombohedral phase. Unipolar strain was measured as a function of temperature for = 0.63 with strains of 0.30% achieved at 175°C, accompanied by a significant decrease in hysteresis with respect to room temperature measurements. The potential for BBFT compositions to be used as high strain actuators is demonstrated by the fabrication of a prototype multilayer which achieved 3 μm displacement at 150°C.  相似文献   

19.
The 0.968[(K0.48Na0.52)]Nb0.95+xSb0.05O3–0.032(Bi0.5Na0.5)ZrO3 [KNNxS–BNZ] lead‐free ceramics with nonstoichiometric niobium ion were fabricated via conventional solid‐state sintering technique and their piezoelectric, dielectric and ferroelectric properties were investigated. When x = 0.010, enhanced piezoelectric properties (d33 ≈ 421 pC/N and kp ≈ 0.47) were obtained due to the construction of rhombohendral—tetragonal phase boundary near room temperature. The KNNxS–BNZ ceramics possesses enhanced Curie temperature (Tc) with improved piezoelectric constant. A large d33 of ~421 pC/N and a high Tc ~256°C can be simultaneously induced in the ceramics with x = 0.010. Especially, good thermal stability was observed in a broad temperature range. The results indicated that our work could benefit development of KNN‐based ceramics and widen their application range.  相似文献   

20.
主要研究了极化电场,极化时间和极化温度等工艺参数对Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3系无铅压电陶瓷介电和压电性能的影响。结果表明:极化电场和极化温度对压电陶瓷的介电、压电性能影响较大,而极化时间则影响较小。适宜的极化电场是3~3.5kV/mm,极化温度70~80℃,极化时间为10~15min。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号