首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
3.
cDNAs encoding the bovine immunodeficiency virus (BIV) transactivator gene (tat) were cloned from virally infected cells and characterized. BIV expresses two distinct tat mRNAs composed of three exons that are derived by alternative splicing. The BIV tat mRNA splice variants encode Tat proteins of 103 (Tat103) and 108 (Tat108) amino acids. The Tat103 coding region is specified only by exon 2, while that of Tat108 is specified by a truncated exon 2 and the first 30 nt of exon 3. Thus, the first 98 amino acids of each Tat are identical, and have amino terminal, cysteine-rich, conserved core, basic, and carboxyl-terminal domains similar to Tats encoded by primate lentiviruses. BIV-infected bovine cells express a 14-kDa phosphorylated Tat protein identical in size to recombinant Tat expressed in bacteria. BIV Tat was shown to localize exclusively in the nucleoli of virally infected and Tat-expressing cells. Reporter gene assays indicated that Tat103 and Tat108 can strongly transactivate the BIV long terminal repeat (LTR) in virally permissive canine Cf2Th and nonpermissive HeLa and mouse NIH 3T3 cells, but not in permissive lapine EREp cells. However, an intact BIV tat gene is required for viral replication in both Cf2Th and EREp cells. Strong LTR activation by BIV Tat requires a TAR (transactivation responsive) element delimited by viral nt +1 to +31 and the Tat basic domain. BIV Tat strongly cross-transactivates the HIV-1 LTR in a TAR-dependent manner in Cf2Th, but not in EREp, HeLa, or NIH 3T3 cells. In contrast, strong, TAR-dependent cross-transactivation of the BIV LTR by HIV-1 Tat could not be demonstrated in any of these cell types. In Cf2Th cells Tat108 effects a moderately stronger transactivation of the BIV LTR than Tat103, indicative of a functional difference in BIV Tat proteins encoded by the mRNA splice variants. The present studies demonstrate that BIV Tat parallels the primate lentiviral Tats in structure and biochemistry but is not interchangeable with the latter.  相似文献   

4.
5.
6.
7.
The 34-kDa early-region 4 open reading frame 6 (E4orf6) product of human adenovirus type 5 forms complexes with both the cellular tumor suppressor p53 and the viral E1B 55-kDa protein (E1B-55kDa). E4orf6 can inhibit p53 transactivation activity, as can E1B-55kDa, and in combination these viral proteins cause the rapid turnover of p53. In addition, E4orf6-55kDa complexes play a critical role at later times in the regulation of viral mRNA transport and shutoff of host cell protein synthesis. In the present study, we have further characterized some of the biological properties of E4orf6. Analysis of extracts from infected cells by Western blotting indicated that E4orf6, like E1A and E1B products, is present at high levels until very late times, suggesting that it is available to act throughout the infectious cycle. This pattern is similar to that of E4orf4 but differs markedly from that of another E4 product, E4orf6/7, which is present only transiently. Synthesis of E4orf6 is maximal at early stages but ceases completely with the onset of shutoff of host protein synthesis; however, it was found that unlike E4orf6/7, E4orf6 is very stable, thus allowing high levels to be maintained even at late times. E4orf6 was shown to be phosphorylated at low levels. Coimmunoprecipitation studies in cells lacking p53 indicated that E4orf6 interacts with a number of other proteins. Five of these were shown to be viral or virally induced proteins ranging in size from 102 to 27 kDa, including E1B-55kDa. One such species, of 72 kDa, was shown not to represent the E2 DNA-binding protein and thus remains to be identified. Another appeared to be the L4 100-kDa nonstructural adenovirus late product, but it appeared to be present nonspecifically and not as part of an E4orf6 complex. Apart from p53, three additional cellular proteins, of 84, 19, and 14 kDa were detected by using an adenovirus vector that expresses only E4orf6. The 19-kDa species and a 16-kDa cellular protein were also shown to interact with E4orf6/7. It is possible that complex formation with these viral and cellular proteins plays a role in one or more of the biological activities associated with E4orf6 and E4orf6/7.  相似文献   

8.
The adenovirus type 5 243R E1A protein induces p53-dependent apoptosis in the absence of the 19- and 55-kDa E1B polypeptides. This effect appears to result from an accumulation of p53 protein and is unrelated to expression of E1B products. We now report that in the presence of the E1B 55-kDa polypeptide, the 289R E1A protein does not induce such p53 accumulation and, in fact, is able to block that induced by E1A 243R. This inhibition also requires the 289R-dependent transactivation of E4orf6 expression. E4orf6 is known to form complexes with the E1B 55-kDa protein and to function both in the transport and stabilization of viral mRNA and in shutoff of host cell protein synthesis. We demonstrated that the block in p53 accumulation is not due to the generalized shutoff of host cell metabolism. Rather, it appears to result from a mechanism targeted specifically to p53, most likely involving a decrease in the stability of p53 protein. The E1B 55-kDa protein is known to interact with both E4orf6 and p53, and as demonstrated recently by others, we showed that E4orf6 also binds directly to p53. Thus, multiple interactions between all three proteins may regulate p53 stability, resulting in the maintenance of low levels of p53 following virus infection.  相似文献   

9.
The human T-cell leukemia virus type I (HTLV-I) and HTLV-II Tax proteins are potent transactivators of viral and cellular gene expression. Using deletion mutants, the downstream parathyroid hormone-related protein (PTHrP) promoter is shown to be responsive to both HTLV-I and HTLV-II Tax as well as the AP1/c-jun proto-oncogene. Transactivation of PTHrP by Tax was seen in T cells but not in B-cell lines or fibroblasts. A carboxy terminal Tax deletion mutant was deficient in transactivation of both the PTHrP and IL2R alpha promoters but not the HTLV-I long terminal repeat (LTR). Exogenous provision of NFkB rescued IL2R alpha expression but not the PTHrP promoter. Thus, HTLV-I Tax, HTLV-II Tax, and c-jun transactivate PTHrP and may contribute to the pathogenesis of hypercalcemia in adult T-cell leukemia.  相似文献   

10.
11.
The structural and accessory proteins of human immunodeficiency virus type 1 are expressed by unspliced or partially spliced mRNAs. Efficient transport of these mRNAs from the nucleus requires the binding of the viral nuclear transport protein Rev to an RNA stem-loop structure called the RRE (Rev response element). However, the RRE does not permit Rev to stimulate the export of unspliced mRNAs from the efficiently spliced beta-globin gene in the absence of additional cis-acting RNA regulatory signals. The p17gag gene instability (INS) element contains RNA elements that can complement Rev activity. In the presence of the INS element and the RRE, Rev permits up to 30 % of the total beta-globin mRNA to be exported to the cytoplasm as unspliced mRNA. Here, we show that a minimal sequence of 30 nt derived from the 5' end of the p17 gag gene INS element (5' INS) is functional and permits the export to the cytoplasm of 14% of the total beta-globin mRNA as unspliced pre-mRNA. Gel mobility shift assays and UV cross-linking experiments have shown that heterogeneous nuclear ribonucleoprotein (hnRNP) A1 and a cellular RNA-binding protein of 50 kDa form a complex on the 5' INS. Mutants in the 5' INS that prevent hnRNP A1 and 50 kDa protein binding are inactive in the transport assay. To confirm that the hnRNP A1 complex is responsible for INS activity, a synthetic high-affinity binding site for hnRNP A1 was also analysed. When the high affinity hnRNP A1 binding site was inserted into the beta-globin reporter, Rev was able to increase the cytoplasmic levels of unspliced mRNAs to 14%. In contrast, the mutant hnRNP A1 binding site, or binding sites for hnRNP C and L are unable to stimulate Rev-mediated RNA transport. We conclude that hnRNP A1 is able to direct unspliced globin pre-mRNA into a nuclear compartment where it is recognised by Rev and then transported to the cytoplasm.  相似文献   

12.
13.
14.
2-Carboxybenzaldehyde dehydrogenase from the phenanthrene-degrading bacterium Nocardioides sp. strain KP7 was purified and characterized. The purified enzyme had a molecular mass of 53 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 205 kDa by gel filtration chromatography. Thus, the homotetramer of the 53-kDa subunit constituted an active enzyme. The apparent Km and kcat values of this enzyme for 2-carboxybenzaldehyde were 100 microM and 39 s(-1), respectively, and those for NAD+ were 83 microM and 32 s(-1), respectively. The structural gene for this enzyme was cloned and sequenced. The length of the gene was 1,455 bp. The nucleotide sequence of the 10,279 bp of DNA around the gene for 2-carboxybenzaldehyde dehydrogenase was also determined, and seven open reading frames were found in this DNA region. These were the genes for 1-hydroxy-2-naphthoate dioxygenase (phdI) and trans-2'-carboxybenzalpyruvate aldolase (phdJ), orf1, the gene for 2-carboxybenzaldehyde dehydrogenase (phdK), orf2/orf3, and orf4. The amino acid sequence of the orf1 product was similar to that of the aromatic hydrocarbon transporter gene (pcaK) in Pseudomonas putida PRS2000. The amino acid sequence of the orf4 product revealed a similarity to cytochrome P-450 proteins. The region between phdK and orf4 encoded orf2 and orf3 on different strands. The amino acid sequences of the orf2 and orf3 products exhibited no significant similarity to the reported sequences in protein databases.  相似文献   

15.
16.
Adeno-associated virus type 2 (AAV-2) gene expression is tightly controlled by functions of the helper virus as well as by the products of its own viral rep gene. Double-immunofluorescence studies of Rep and VP protein expression in cells coinfected with AAV-2 and adenovirus type 2 showed that a large proportion of these cells expressed Rep78 and Rep52 but no capsid proteins. The percentage of Rep78/Rep52- and capsid protein-positive cells was strongly influenced by the relative ratio of AAV-2 to adenovirus type 2. In contrast, nearly all cells positive for Rep68/Rep40 were also positive for capsid protein expression. Examination of p40 promoter transactivation by individual Rep proteins in the presence of adenovirus, however, showed that both Rep78 and Rep68 efficiently stimulated p40 mRNA accumulation and capsid protein expression. This strong transactivation was reliant upon the presence of terminal repeats and correlated with template amplification. In replication-deficient expression constructs, transactivation was observed only with Rep68 and was dependent on the linear Rep binding site within the left terminal repeat which was detected in the presence of high adenovirus concentrations. In the absence of any terminal repeat sequences, Rep68 expression again led to a minor transactivation of capsid protein expression which was detectable only at low adenovirus concentrations. This low level of transactivation of capsid protein expression by Rep proteins in the absence of terminal repeats resulted in a lower efficiency of capsid assembly. The data show a dominant influence of adenovirus type 2 functions on AAV-2 gene expression, a requirement for terminal repeats for strong transactivation of the p40 promoter by Rep proteins, and differential influences of Rep78 and Rep68 on AAV-2 promoters. Implications for the production of recombinant AAV-2 vectors are discussed.  相似文献   

17.
We have examined the feasibility of using interferon (IFN) gene transfer as a novel approach to anti-human immunodeficiency virus type 1 (HIV-1) therapy in this study. To limit expression of a transduced HIV-1 long terminal repeat (LTR)-IFNA2 (the new approved nomenclature for IFN genes is used throughout this article) hybrid gene to the HIV-1-infected cells, HIV-1 LTR was modified. Deletion of the NF-kappa B elements of the HIV-1 LTR significantly inhibited Tat-mediated transactivation in T-cell lines, as well as in a monocyte line, U937. Replacement of the NF-kappa B elements in the HIV-1 LTR by a DNA fragment derived from the 5'-flanking region of IFN-stimulated gene 15 (ISG15), containing the IFN-stimulated response element, partially restored Tat-mediated activation of LTR in T cells as well as in monocytes. Insertion of this chimeric promoter (ISG15 LTR) upstream of the human IFNA2 gene directed high levels of IFN synthesis in Tat-expressing cells, while this promoter was not responsive to tumor necrosis factor alpha-mediated activation. ISG15-LTR-IFN hybrid gene inserted into the retrovirus vector was transduced into Jurkat and U937 cells. Selected transfected clones produced low levels of IFN A (IFNA) constitutively, and their abilities to express interleukin-2 and interleukin-2 receptor upon stimulation with phytohemagglutinin and phorbol myristate acetate were retained. Enhancement of IFNA synthesis observed upon HIV-1 infection resulted in significant inhibition of HIV-1 replication for a period of at least 30 days. Virus isolated from IFNA-producing cells was able to replicate in the U937 cells but did not replicate efficiently in U937 cells transduced with the IFNA gene. These results suggest that targeting IFN synthesis to HIV-1-infected cells is an attainable goal and that autocrine IFN synthesis results in a long-lasting and permanent suppression of HIV-1 replication.  相似文献   

18.
Previous reports showed transactivation of the long terminal repeat (LTR) of HIV-1 in Jurkat cells persistently infected with vaccinia virus. In this communication, electrophoretic mobility shift assays were used to characterize the elements in HIV-1 LTR which might be responsible for the mechanism of transactivation. The results indicated that two elements, those for binding NF-kB and NFAT-1, were able to interact with nuclear extracts derived from Jurkat cells persistently infected with vaccinia virus, suggesting that they may play a role in the transactivation of HIV-1 LTR.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号