首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 遥感影像中地表信息表达真实程度决定了影像信息提取和定量化应用水平,传统的从像素灰度和视觉特性角度的影像质量评价方法难以评价影像对地表信息表达能力,本文从地表反射率和NDVI(normalized difference vegetation index)两种地表参数真实性角度评价GF-1和SPOT-7多光谱影像质量。方法 提出了一种基于地表参数真实性的多光谱影像质量评价方法,完成GF-1和SPOT-7卫星对实验区同步成像,地面同步测量大气光学特性和典型地物样区光谱,获取同步观测数据并对多光谱影像进行辐射误差处理,计算地物样区在影像上的反射率和NDVI,通过与地面实测光谱数据比较分析了地表参数真实性,评价GF-1和SPOT-7多光谱影像质量。结果 人工靶标中GF-1影像在4个波段反射率误差均在5%内,精度优于SPOT-7;植被地物中SPOT-7影像在蓝绿红波段反射率误差在4%内,近红外波段误差在15%内,NDVI误差在16%内,反射率和NDVI精度均优于GF-1;硬地地物中GF-1影像在4个波段反射率误差在6%内,精度优于SPOT-7;评价结果表明SPOT-7多光谱影像对植被类地物光谱表达真实度更高,GF-1对硬地类地物光谱表达真实度更高。结论 提出的基于地表参数真实性的遥感影像质量评价方法,能够有效地从地物光谱信息表达精度的角度评价影像质量。  相似文献   

2.
导电式原子力显微镜(Conducting Atomic Force Microscopy:CAFM)和扫描表面电位显微镜(Scanning Surface Potential Microscopy:SSPM)已经被用于相变光盘的信息符成像。在实验中测量了带初始过程的商用DVD-RW光盘。通过比较,CAFM的测量结果明显好于SSPM的测量结果。DVD-RW在3.5m/s的线速度下的恰当刻写功率范围被CAFM确定为10-15mW。这是验证高密度记录符的一个很有效的方法。这种新方法也可以用于新型相变记录材料的研发中。  相似文献   

3.
This study presents a fabrication method for spherical or ellipsoidal structures, achieved by using a liquid mold in a controlled manner. In order to verify this method, the physical relationship between liquid drops and pre-cured PDMS mixture was investigated during fabrication by altering properties such as density, viscosity, and surface tension. The results show that the lateral capillary force plays a critical role in fabricating hollow dome-like structures in a well-arranged array format. The degree of sphere of the fabricated structures was theoretically examined and was consistent with experimental data. This method is useful for fabricating hollow spherical structures with easy-to-fabricate protocols, and is affordable for general laboratories not equipped with conventional clean room facilities. Standard molding techniques for spherical structures are commonly cumbersome and difficult, since the removal process of the spherical rigid mold from the structure is almost impossible, or destructive to the fabrication. The current fabrication method uses a liquid fabrication mold, therefore providing a noninvasive means of forming spherical structures in pre-cured polymeric mixtures for micro- and meso-scale level applications. This method is also potentially beneficial for producing dynamic culture arrays with a sufficient supply of cell media to maintain controlled cellular environments that can directly induce stem cell differentiation and proliferation.  相似文献   

4.
Microfluidic technologies are gaining increasing importance due to their capability of manipulating fluids at the microscale that should allow to synthesize many products with surprisingly high yields and short reaction times. In the lab-on-chip field researchers have developed microfluidic apparatuses to provide special equipments for producing positron emission tomography (PET) radiopharmaceuticals in a quicker, safer, and more reliable way compared to traditional vessel-based approaches. In this paper, we have selected a number of polymeric materials, such as polydimethylsiloxane (PDMS), SU-8, and Teflon-like coatings deposited on PDMS or hard substrates, to be used for the fabrication of micro apparatuses for radiosynthesis. Their radioactivity resistance was investigated employing different setups and the results analyzed by atomic force microscopy (AFM), optical microscopy, and Fourier transform infrared spectroscopy (FT-IR). To evaluate undesired absorption effects in the investigated materials, the fluoride radioactive trapping inside microchannel was measured through autoradiography. We found out that polymeric materials such as SU-8 and Teflon coated on hard materials seem very appealing for fabricating microreactors for radiochemistry.  相似文献   

5.
高分辨率的空间敏感阵列以及实时、精确的图象重建算法是层析成象技术的关键。为了得到足够的投影数据,提出了几种用于光学层析成像的多方向平行射束投影结构,这几种结构均采用CCD器件作为敏感阵列,可得到高分辨率的被测物场投影信息。同时分析了这几种投影结构下图象重建中权重系数的计算方法,并对不同结构的图象重建效果进行了比较,得出了投影方向数、投影数据与重建图象质量之间的关系。仿真结果表明,采用CCD的平行射束投影系统可重建出很高质量的图象。  相似文献   

6.
Atomic Force Microscopy (AFM) is a fundamental tool for the investigation of a wide range of mechanical properties on nanoscale due to the contact interaction between the AFM tip and the sample surface. The information recorded with AFM is stored and synthesized by imaging the sample properties to be studied. Distortions and unwanted effects in AFM images can be produced both due to instrumental sources or sample unknown bad responses. The focus of this paper is on an algorithm for distortion corrections for AFM recorded images due to the convolution of thermal drift and unknown polymer compliance. When a sequence of AFM images correspondent to the same polymeric area is acquired, it is common to observe the convolution of thermal drift with surface modifications due to the AFM tip stresses. The surface modifications are material properties and add knowledge to the response of the materials on nanoscale. As a consequence, a suitable de-convolution of the thermal drifts on the recorded images needs to be developed. Because soft polymeric samples can present unwanted height alteration due to the stressing AFM tip contact, we present a method that combines a thermal drifts correcting tool (where the original images are modified using a suitable mapping function) with a height rescaling method. In turn, an image matching method based on a Tikhonov functional is developed between topography data and the surface elastic maps, respectively. The precision achieved and the fast computation time required make our methods particularly useful for image analysis on soft polymeric samples as well as in a wide range of other scanning probe microscopy applications.  相似文献   

7.
Presented here is a theoretical analysis and experimental validation for the passive frequency tuning of atomic force microscope (AFM) optical levers. The natural frequencies of the optical lever are a function of material, geometry, and elastic properties of the microstructure. In this regard, the geometry of the structure can be altered in post-fabrication using such methods as laser drilling or focused ion beam machining. Several slot sizes are investigated and the eigenvalues obtained are mapped as a function of the slot length and width. In this regard, the elastic property of the optical lever can be tuned through material removal in either a mass or stiffness reduction arrangement in which a particular slot size and configuration is machined into the optical lever structure. In this work a slot cut into the optical lever using focused ion beam machining is used to passively tune the natural frequencies and mode shapes of suspended microcantilever structures used for optical lever scanning such as in AFM probes. This analysis will contribute to the performance optimization of AFM probes and microresonators. The Rayleigh–Ritz energy method is used for the theoretical analysis and a non-contact optical test method is used to obtain the natural frequency of several slotted AFM optical levers.  相似文献   

8.
Polydimethylsiloxane (PDMS) is an important polymeric material widely used in bio-MEMS devices such as micropillar arrays for cellular mechanical force measurements. The accuracy of such a measurement relies on choosing an appropriate material constitutive model for converting the measured structural deformations into corresponding reaction forces. However, although PDMS is a well-known viscoelastic material, many researchers in the past have treated it as a linear elastic material, which could result in errors of cellular traction force interpretation. In this paper, the mechanical properties of PDMS were characterized by using uniaxial compression, dynamic mechanical analysis, and nanoindentation tests, as well as finite element analysis (FEA). A generalized Maxwell model with the use of two exponential terms was used to emulate the mechanical behavior of PDMS at room temperature. After we found the viscoelastic constitutive law of PDMS, we used it to develop a more accurate model for converting deflection data to cellular traction forces. Moreover, in situ cellular traction force evolutions of cardiac myocytes were demonstrated by using this new conversion model. The results presented by this paper are believed to be useful for biologists who are interpreting similar physiological processes.  相似文献   

9.
《Real》2000,6(3):195-211
Markovian approaches to early vision processes need a huge amount of computing power. These algorithms can usually be implemented on parallel computing structures. Herein, we show that the Markovian labeling approach can be implemented in fully parallel cellular network architectures, using simple functions and data representations. This makes possible to implement our model in parallel imaging VLSI chips.As an example, we have developed a simplified statistical image segmentation algorithm for the Cellular Neural/Nonlinear Networks Universal Machine (CNN-UM), which is a new image processing tool, containing thousands of cells with analog dynamics, local memories and processing units. The Modified Metropolis Dynamics (MMD) optimization method can be implemented into the raw analog architecture of the CNN-UM. We can introduce the whole pseudo-stochastic segmentation process in the CNN architecture using 8 memories/cell. We use simple arithmetic functions (addition, multiplication), equality-test between neighboring pixels and very simple nonlinear output functions (step, jigsaw). With this architecture, the proposed VLSI CNN chip can execute a pseudo-stochastic relaxation algorithm of about 100 iterations in about 100 μs.In the suggested solution the segmentation is unsupervised, where a pixel-level statistical estimation model is used. We have tested different monogrid and multigrid architectures.In our CNN-UM model several complex preprocessing steps can be involved, such as texture-classification or anisotropic diffusion. With these preprocessing steps, our fully parallel cellular system may work as a high-level image segmentation machine, using only simple functions based on the close-neighborhood of a pixel.  相似文献   

10.
The study of a new remote-sensing technique for the investigation of near-surface wind fields is an important oceanographic problem. This article is focused on a new method of recording wind fields by the analysis of optical images of sea surface and range–time–intensity images (RTI images) of the sea surface. An RTI image constructed from optical profiles of the sea surface is an optical analogue of a side-looking radar image of the sea surface but has a higher spatial resolution and some possibility for remote sensing of sea roughness. It is possible to form RTI images with a range from some tens of metres to tens of kilometres, depending on the spatial resolution needed. A set of original optical devices for recoding RTI images using linear arrays of CCD-photodiodes was created. An analytical model of sea surface radiance for visible light was developed taking into account the polarization of light and shadowing of surface waves for grazing view geometry. The principle of remote sensing of near-surface winds by its manifestations on a waved surface under grazing angles based on a comparison of measured and modelled surface radiance is discussed. Investigations of near-surface wind field features in internal reservoirs and various regions of the seas during the last few years have been conducted by optical systems. The structure of near-surface wind fields, eddies, wind fronts, and katabatic wind flows for ranges from hundreds of metres to some tens of kilometres was recorded and analysed. Derived data of optical monitoring of water surfaces may serve for future investigations of near-surface wind features.  相似文献   

11.
Image analysis using multigrid relaxation methods   总被引:2,自引:0,他引:2  
Image analysis problems, posed mathematically as variational principles or as partial differential equations, are amenable to numerical solution by relaxation algorithms that are local, iterative, and often parallel. Although they are well suited structurally for implementation on massively parallel, locally interconnected computational architectures, such distributed algorithms are seriously handi capped by an inherent inefficiency at propagating constraints between widely separated processing elements. Hence, they converge extremely slowly when confronted by the large representations of early vision. Application of multigrid methods can overcome this drawback, as we showed in previous work on 3-D surface reconstruction. In this paper, we develop multiresolution iterative algorithms for computing lightness, shape-from-shading, and optical flow, and we examine the efficiency of these algorithms using synthetic image inputs. The multigrid methodology that we describe is broadly applicable in early vision. Notably, it is an appealing strategy to use in conjunction with regularization analysis for the efficient solution of a wide range of ill-posed image analysis problems.  相似文献   

12.
In this paper, we present an overview of the impact of optical technology on parallel image computing. We study a few efficient and simple optical organizations for a set of preprocessing tasks such as texture analysis, histogramming, edge detection, dilation, and contraction. Based on a generic parallel model of computation with optical interconnects called OMC, we then discuss a set of parallel architectures and algorithms for fine grain intermediate vision processing. These include optimal solutions to problems such as connectivity and proximity using massively parallel optical arrays. In conclusion, we concentrate on higher level image understanding issues such as feature extraction and pattern recognition.  相似文献   

13.
We have developed a non-destructive imaging flow cell-sorting system using an ultra-high-speed camera (shutter speed of 1/10,000 s) with a real-time image analysis unit and a poly(methyl methacrylate) (PMMA)-based disposable microfluidic chip for single-cell-based on-chip cellomics. It has a 3-D micropipetting device that supports fully automated sorting and collection of samples. The entire fluidic system is implemented in a disposable plastic chip, enabling biological samples to be lined up in a laminar flow using hydrodynamic focusing. Its optical system enables direct observation-based cell identification using specific image indexes and phase-contrast/fluorescence microscopy, real-time image processing. It has a non-destructive, wider dynamic range, sorting procedure using mild electrostatic force in a laminar flow; agarose gel electrodes are used to prevent electrode loss and electrolysis bubble formation. The microreservoir used for recultivating collected target cells is contamination-free. An integrated ultra-high-speed droplet polymerase chain reaction measurement module is used for DNA/mRNA analysis of the collected target cells. This system was used to separate cardiomyocyte cells from a mixture of various cells. All the operations were automated using the 3-D micropipetting device. The results demonstrate that this imaging flow cell-sorting system is practically applicable for biological research and clinical diagnosis.  相似文献   

14.
复杂结构高精度在线测量是航空航天等多个领域结构件生产过程中必要的环节,对产品质量起到决定性作用。针对现有手工测量方法结构特征尺寸精度低、三维形貌重建困难和数据一致性差等问题,提出了一种基于光学频率梳的非接触在线测量方法,并对结构件表面三维特征进行测量实验。该方法将机械平台与光学频率梳测量方法相融合,构建了以飞秒光学频率梳为基础的表面特征高精度测量体系。通过图像处理与分析获取表面三维点云数据,计算拟合得到被测物体的表面形貌特征,进而解算出被测物体的几何参数。实验结果表明:采用该测量方法和处理算法搭建的系统最大检测面积为900 mm×1100 mm,测量重复精度为0.01 mm,结合工控机数据处理软件,可实现自动化在线检测。  相似文献   

15.
Abstract— A typical polymer net with microcells of different sizes (from 25 × 25 to 200 × 200 μm) was formed by using a lithographic process, both on glass and flexible polymeric substrates. To investigate the influence of polymeric walls on FLC‐display cell operation, the typical electro‐optical parameters of FLC layers — light transmission and scattering, optical contrast ratio and response time — were measured under different conditions, such as display cell preparation and processing, driving voltage, microcell dimensions, and temperature.  相似文献   

16.
An increasing awareness of the need for high speed parallel processing systems for image analysis has stimulated a great deal of interest in the design and development of such systems. Efficient processing schemes for several specific problems have been developed providing some insight into the general problems encountered in designing efficient image processing algorithms for parallel architectures. However it is still not clear what architecture or architectures are best suited for image processing in general, or how one may go about determining those which are. An approach that would allow application requirements to specify architectural features would be useful in this context. Working towards this goal, general principles are outlined for formulating parallel image processing tasks by exploiting parallelism in the algorithms and data structures employed. A synchronous parallel processing model is proposed which governs the communication and interaction between these tasks. This model presents a uniform framework for comparing and contrasting different formulation strategies. In addition, techniques are developed for analyzing instances of this model to determine a high level specification of a parallel architecture that best ‘matches’ the requirements of the corresponding application. It is also possible to derive initial estimates of the component capabilities that are required to achieve predefined performance levels. Such analysis tools are useful both in the design stage, in the selection of a specific parallel architecture, or in efficiently utilizing an existing one. In addition, the architecture independent specification of application requirements makes it a useful tool for benchmarking applications.  相似文献   

17.
Vision-based force measurement   总被引:1,自引:0,他引:1  
This paper demonstrates a method to visually measure the force distribution applied to a linearly elastic object using the contour data in an image. The force measurement is accomplished by making use of the result from linear elasticity that the displacement field of the contour of a linearly elastic object is sufficient to completely recover the force distribution applied to the object. This result leads naturally to a deformable template matching approach where the template is deformed according to the governing equations of linear elasticity. An energy minimization method is used to match the template to the contour data in the image. This technique of visually measuring forces we refer to as vision-based force measurement (VBFM). VBFM has the potential to increase the robustness and reliability of micromanipulation and biomanipulation tasks where force sensing is essential for success. The effectiveness of VBFM is demonstrated for both a microcantilever beam and a microgripper. A sensor resolution of less than +/-3 nN for the microcantilever and +/-3 mN for the microgripper was achieved using VBFM. Performance optimizations for the energy minimization problem are also discussed that make this algorithm feasible for real-time applications.  相似文献   

18.
光流法是计算机视觉中的一个基础性算法,可广泛应用于运动检测、运动估计、视频分析等领域。但高质量光流法最大的问题是计算复杂、速度慢,限制了它在实际系统中的应用。针对一种混合亮度和梯度模型的高质量光流法,为其设计了一种高效、可扩展的并行计算方法。通过在具有代表性的网络众核架构-Tilera上进行验证,对于分辨率为640×480的图片,提出的并行计算方法在具有36核的Tilera处理器上执行时间为0.80秒,比主频3.40 GHz的CPU i3-3240快2.56倍,但功耗不到其1/6。当用于嵌入式环境时,其速度比ARM9处理器快33倍,而功耗只有它的一半。实验表明该并行算法具有良好的扩展性,可通过选择不同核数的处理器满足系统对性能、功耗的综合需求。  相似文献   

19.
Bacterial biofilms are a persistent source of contamination, and much effort has been invested in developing antifouling surfaces or coatings. A bottleneck in developing such coatings is often the time-consuming task of screening and evaluating a large number of surface materials. An automated high-throughput assay is therefore needed. In this study, we present a promising technique, laser scanning cytometry (LSC), for automated quantification of bacteria on surfaces. The method was evaluated by quantifying young Staphylococcus xylosus biofilms on glass surfaces using LSC and comparing the results with cell counts obtained by fluorescence microscopy. As an example of application, we quantified bacterial adhesion to seven different sol-gel-based coatings on stainless steel. The surface structure and hydrophobicity of the coatings were analyzed using atomic force microscopy and water contact angle measurements. Among the coatings tested, a significant reduction in adhesion of S. xylosus was observed only for one coating, which also had a unique surface microstructure. LSC was particularly sensitive for quantification at low cell densities, and the adhered bacteria could be quantified both as cell number and as area coverage. The method proved to be an excellent alternative to microscopy for fast and reproducible quantification of microbial colonization on abiotic surfaces.  相似文献   

20.
In this article, we demonstrate the liquid crystal (LC) alignment characteristics of solution‐derived nickel oxide (NiO) film modified with ion‐beam (IB) irradiation. Cross‐polarized optical microscopy and pretilt angle measurements verified that uniform LC alignment was achieved using the NiO film as an alignment layer regardless of IB incidence angle. Contact angle measurements revealed that all of the NiO films had a deionized water contact angle below 90°, which indicates that they had hydrophilic surfaces that had an effect on the homogeneous LC alignment. Atomic force microscopy was conducted to determine the physical surface modification due to the IB irradiation, which showed that it reduced the size of the surface grains with agglomerations depending on the surface tilt from the IB incidence angle. Furthermore, microgroove structures strongly related to uniform LC alignment were observed after IB irradiation. Chemical surface modification was investigated via an X‐ray photoelectron spectroscopy analysis which revealed that IB irradiation modified the chemical bonds in the NiO film, and this affected the LC alignment state. Thus, these results indicate that using NiO film exposed to IB irradiation as an alignment layer is a suitable method for LC applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号