首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
AP-1-associated factor 1 (AF-1), is a novel protein complex that dramatically enhances the assembly of JunD-containing dimers onto AP-1 consensus sites. We describe the partial purification of AF-1 from nuclear extracts of the T-cell line MLA 144 by ionic, hydrophobic and gel filtration chromatography. AF-1 is a DNA-binding protein composed of low molecular mass polypeptides of 7-17 kDa that exists in solution as a 34-kDa complex. JunD interactions with DNA are accelerated in the presence of AF-1 through the formation of a true tri-molecular complex with JunD dimers and DNA that assembles much more rapidly on DNA than JunD alone. DNA binding analysis of AF-1 interaction with JunD.AP-1 and DNA shows that AF-1 increases the DNA binding affinity of JunD for AP-1 sites over 100-fold. DNA cleavage footprint analysis of isolated AF-1.JunD DNA complexes shows that the ternary complex makes nearly twice as many contacts with DNA than JunD dimers alone. AF-1 interacts readily, but differentially with Jun homodimers and Jun.Fos heterodimers. These findings distinguish AF-1 as a significant protein-specific modulator of AP-1.JunD in T-cells.  相似文献   

4.
As a step toward elucidating the physiological role of insulin-like growth factor-I (IGF-I) in mediating estrogen action, we sought to determine the molecular basis of the phenomenon. In HepG2 cells expressing exogenous estrogen receptors (ER), a reporter gene plasmid containing 600 base pairs of the chicken IGF-I promoter enhanced expression of luciferase 8.6-fold in response to 10(-6) M 17 beta-estradiol, indicating that the IGF-I promoter is a target of estrogen regulation. Although no conventional estrogen-responsive element was identified within the promoter fragment, the AP-1 motif located therein was shown to be essential; the estrogen-responsive enhancement of the Fos-Jun binding to the AP-1 motif, which takes place by means of post-translational modification, mediates the estrogen action. A direct or indirect interaction between the estrogen-ER complex and the Fos-Jun complex seems to facilitate the Fos-Jun binding to the target DNA. Although ER binding to the target DNA was not considered to be involved in the signaling pathway, the DNA binding domain-deficient ER did not mediate the phenomenon, providing support for the existence of a unique function of the DNA binding domain of ER in facilitating some protein-protein interaction. In conclusion, our present observations demonstrate that the chicken IGF-I gene promoter is controlled by estrogen through a unique pathway involving Fos, Jun, and the DNA binding domain of ER.  相似文献   

5.
The nuclear factor of activated T cells (NFAT) and the AP-1 heterodimer, Fos-Jun, cooperatively bind a composite DNA site and synergistically activate the expression of many immune-response genes. A 2.7-A-resolution crystal structure of the DNA-binding domains of NFAT, Fos and Jun, in a quaternary complex with a DNA fragment containing the distal antigen-receptor response element from the interleukin-2 gene promoter, shows an extended interface between NFAT and AP-1, facilitated by the bending of Fos and DNA. The tight association of the three proteins on DNA creates a continuous groove for the recognition of 15 base pairs.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
We demonstrate the use of a DNA minicircle competition binding assay, together with DNA cyclization kinetics and gel-phasing methods, to show that the DNA-binding domains (dbd) of the heterodimeric leucine zipper protein Fos-Jun do not bend the AP-1 target site. Our DNA constructs contain an AP-1 site phased by 1-4 helical turns against an A-tract-directed bend. Competition binding experiments reveal that (dbd)Fos-Jun has a slight preference for binding to linear over circular AP-1 DNAs, independent of whether the site faces in or out on the circle. This result suggests that (dbd)Fos-Jun slightly stiffens rather than bends its DNA target site. A single A-tract bend replacing the AP-1 site is readily detected by its effect on cyclization kinetics, in contrast to the observations for Fos-Jun bound at the AP-1 locus. In contrast, comparative electrophoresis reveals that Fos-Jun-DNA complexes, in which the A-tract bend is positioned close (1-2 helical turns) to the AP-1 site, show phase-dependent variations in gel mobilities that are comparable with those observed when a single A-tract bend replaces the AP-1 site. Whereas gel mobility variations of Fos-Jun-DNA complexes decrease linearly with increasing Mg2+ contained in the gel, the solution binding preference of (dbd)Fos-Jun for linear over circular DNAs is independent of Mg2+ concentration. Hence, gel mobility variations of Fos-Jun-DNA complexes are not indicative of (dbd)Fos-Jun-induced DNA bending (upper limit 5 degrees) in the low salt conditions of gel electrophoresis. Instead, we propose that the gel anomalies depend on the steric relationship of the leucine zipper region with respect to a DNA bend.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号