共查询到20条相似文献,搜索用时 15 毫秒
1.
提出一种基于时域神经网络结合分位数回归与动态误差修正的风电功率概率预测方法。首先,采用时域卷积网络构造分位数回归模型。然后,对分位数回归模型的预测误差分布进行建模。最后,采用动态误差修正技术对分位数点进行修正,得到多组风电功率预测区间。采用两个风电场数据集进行验证,结果表明所提方法能在保证高可靠性的同时获得较窄的预测区间,并有效解决分位数交叉问题,可为电网调度优化提供有效帮助。 相似文献
2.
概率密度预测能够给出未来风电功率可能的波动范围、预测值出现的概率及不确定性等更多信息,提出基于经验小波变换(EWT)和分位数回归森林的短期风电功率概率密度组合预测模型。首先,采用新型自适应信号处理方法——经验小波变换,将原始风电功率序列分解为一系列频率特征互异的经验模式;然后,对每一经验模式序列分别构建分位数回归森林预测模型,得到任意分位点条件下的预测结果,通过叠加不同经验模式预测结果获得最终的短期风电功率预测值;最后,对预测值条件分布采用核密度估计获得任意时刻概率密度预测。仿真结果验证了所提模型的有效性。 相似文献
3.
针对风电功率预测问题,在现有预测方法和概率性区间预测的基础上,提出基于深度学习分位数回归的风电功率概率预测方法。该方法采用Adam随机梯度下降法在不同分位数条件下对长短期记忆神经网络(LSTM)的输入、遗忘、记忆、输出参数进行估计,得出未来200 h内各个时刻风电功率的概率密度函数。根据美国PJM网上的风电功率实际数据的仿真结果表明,所提方法不仅能得出较为精确的点预测结果,而且能够获得风电功率完整的概率密度函数预测结果。与神经网络分位数回归相比,其精度更高,且在同等置信度下的预测区间范围更小。 相似文献
4.
短期负荷预测在电力系统规划与运行中起着重要作用。提出一种融合注意力机制和分位数回归的混合卷积双向长短期神经网络短期负荷概率预测模型。首先,利用相关性分析选取合适的天气变量和历史负荷。其次,通过Copula模型计算出风险阈值,该值被用于构造峰值二进制指示输入特征。接着,将所选特征集输入到卷积双向长短期神经网络预测模型,引入注意力机制给予数据不同关注。然后,采用核密度估计对负荷进行概率预测。最后,使用平均绝对百分比误差和均方根误差对模型预测性能进行评估。仿真结果表明,该模型具有更高的预测精度。 相似文献
5.
风力发电是新能源发电中技术之一,对促进电力工业调整、减少环境污染、推进技术进步具有重要意义.然而,目前风力发电的大规模使用还存在一定的难度,开展风电场功率预测的研究势在必行,基于小波理论及神经网络的方法,开展相应的研究. 相似文献
6.
《电网技术》2021,45(11):4426-4434
现有分位点回归方法在进行多分位点预测时往往需要为每个分位点单独建立模型,不仅训练成本高还会导致"分位点交叉"。对此,提出了一种基于藤copula分位数回归的光伏功率日前概率预测模型。利用藤copula对光伏功率及其条件变量间的相依结构进行解析化表达,基于优化算法对藤copula结构及参数进行优化,在此基础上建立起光伏功率条件分位数回归模型;在条件变量中引入光伏功率点预测量,并借助最小化连续秩概率分数(continuousrank probability score,CRPS)权衡可靠性与锐度,筛选出最佳条件组合。算例仿真结果表明,该方法克服了现有分位数回归方法的缺点,进一步提升了光伏功率概率预测性能。 相似文献
7.
针对短期风电功率概率预测,提出一种基于核主成分分析(KPCA)与核最小最大概率回归机(KMPMR)相结合的方法。KPCA方法可对数据进行预处理,在特征空间中有效提取模型输入的非线性主元;KMPMR方法在仅需假定产生预测模型的数据分布的均值与协方差矩阵已知时,将最小最大概率分类机(KMPMC)的分类超平面看作预测模型的输出,可最大化模型的输出位于其真实值边界内的最小概率。实验结果表明,所提方法在预测精度上优于现有的预测方法,并能提供预测误差的分布范围。 相似文献
8.
9.
基于RBF神经网络分位数回归的电力负荷概率密度预测方法 总被引:9,自引:0,他引:9
针对电力系统短期负荷预测问题,在现有的组合预测和概率性区间预测的基础上,提出了基于RBF神经网络分位数回归的概率密度预测方法,得出未来一天中任意时期负荷的概率密度函数,可以得到比点预测和区间预测更多的有用信息,实现了对未来负荷完整概率分布的预测。中国某市实际数据的预测结果表明,提出的概率密度预测方法不仅能得出较为精确的点预测结果,而且能够获得短期负荷完整的概率密度函数预测结果。 相似文献
10.
11.
为提高风电场输出功率预测精度,提出一种动态基于神经网络的功率预测方法。根据实际运行的风电场相关风速、相关风向和风电功率的历史数据,建立了基于 Elman神经元网络的短期风电功率预测模型。运用多层 Elman 神经网络模型对西北某风电场实际 1 h 和 24 h 的风电输出功率预测,与BP神经网络模型对比,经仿真分析证明前者具有预测精度高的特点,三隐含层 Elman 神经网络模型预测效果最佳。这表明利用 Elman 回归神经网络建模对风电功率进行预测是可行的,能有效提高功率预测精度。 相似文献
12.
13.
14.
为了提高风电功率的预测精度,研究了一种基于粒子滤波(PF)与径向基函数(RBF)神经网络相结合的风电功率预测方法。使用PF算法对历史风速数据进行滤波处理,将处理后的风速数据结合风向、温度的历史数据,归一化后构成风电功率预测模型的新的输入数据;利用处理后的新的输入数据和输出数据,建立PF-RBF神经网络预测模型,预测风电场的输出功率。仿真结果表明,使用该预测模型进行风电功率预测,预测精度有一定的提高,连续120 h功率预测的平均绝对百分误差达到8.04%,均方根误差达到10.67%。 相似文献
15.
16.
为实现风电功率概率预测,分析预测结果的影响因素,提出一种基于NGBoost(自然梯度提升)算法并考虑可解释性的风电功率概率预测方法。首先,在分析风电功率特性的基础上给出风电功率概率预测模型的定义,利用NGBoost算法训练预测模型,实现考虑风电功率异方差特性的概率预测;然后,利用合作博弈论中的Shapley值对预测模型进行解释,分析气象因素对预测结果的影响;最后,采用实际风电场数据验证模型的预测性能,并与其他方法进行比较。结果表明,所提方法取得了较好的预测效果,并且能够解释预测结果,分析气象因素对预测结果的影响是一种兼具实用性和有效性的风电功率概率预测方法。 相似文献
17.
18.
传统风电功率预测是确定的、静态的、非条件性的,无法代表不同外部状态的发电过程,缺失预测误差的概率性信息。针对上述问题,提出了一种动态的基于风场景识别的风电功率概率预测方法。首先建立基于K means的风场景识别模型,根据风速和风向识别自然风特征,据此划分风电场风况类别。然后针对各风况类别建立基于相关向量机的概率预测模型。在实际预测中,根据实时风况动态调整概率预测模型参数。以中国西北某风电场为例进行验证,结果表明,该方法提高了单点预测精度、概率预测可靠性和技术分数、运行效率,为预测细化建模提供新的解决思路。 相似文献
19.
由于风力发电的随机性和间歇性,风功率预测不仅需要准确的点预测,而且需要可靠的区间预测和概率预测来量化风功率的不确定性。提出了一种基于变分模态分解(variational mode decomposition,VMD)和分位数卷积-循环神经网络的风功率概率预测模型。首先,使用VMD技术将原始风功率数据序列分解为一系列特征互异的模态分量,再通过卷积神经网络(convolutional neural network,CNN)提取反映各模态分量动态变化的高阶特征。然后,基于提取的高阶特征进行分位数回归建模,采用长短期记忆(long short-term memory,LSTM)循环神经网络预测未来任意时刻不同分位数条件下的风功率值。最后,利用核密度估计(kernel density estimation,KDE)得到风功率概率密度曲线。以中国某风电场数据作为算例测试,证明了所提出模型的有效性。 相似文献
20.
研究了月度负荷的特性,指出了其季节波动性和趋势增长性双重特性;介绍了广义回归神经网络的基本理论,提出以横向历史数据和纵向历史数据作为输入神经元,建立了月度负荷预测模型,并将其应用于我国某地区月度负荷预测,结果表明:该模型的预测精度明显高于一般的BP网络。 相似文献