首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多端口直流直流自耦变压器   总被引:2,自引:0,他引:2  
该文提出了一种多端口直流–直流自耦变压器的拓扑,该多端口直流自耦变压器用于互联多个直流电压等级不同的直流系统。提出了多端口直流自耦变压器的潮流直接分析法以及潮流分解分析法,推导了多端口直流自耦变压器中各换流器额定电压与额定功率设计方法,设计了多端口直流自耦变压器的控制策略。以一个三端口直流自耦变压器为测试算例,在PSCAD/EMTDC下仿真验证了多端口直流自耦变压器的技术可行性。以互联±250、±320 k V和±400 k V直流系统为例,假设±250 k V和±320 k V系统的额定输入/输出功率分别为500 MW和1 000 MW,采用常规的多端口直流–直流变换器技术所需要的换流器总容量为3 000 MW,而采用多端口直流自耦变压器技术所需要总的换流器仅为775 MW,所使用的换流器总容量仅为现有技术的26%,显著节省了成本,降低了运行损耗。  相似文献   

2.
结合中国高压直流输电现状和直流电网技术的发展,提出了利用面对面式DC/DC变换器互联不同电压等级的基于电网换相换流器(LCC)的高压直流(LCC-HVDC)系统的方案,总结了互联系统的优势并提出了一种依赖通信的适用于互联系统的控制器。基于两条实际LCC-HVDC线路背景,在PSCAD/EMTDC中搭建了利用±500 kV/±800 kV,1 000 MW面对面式DC/DC互联一条±500 kV,3 000 MW线路和一条±800 kV,7 200 MW线路的仿真模型。仿真结果说明,常规LCC控制不适用于互联系统,且验证了提出的控制器的有效性。所述控制器可在对原有LCC换流站控制改动最小的前提下实现互联系统的稳定运行。  相似文献   

3.
多端直流输电和直流电网技术是解决新能源并网的有效技术手段之一,直流变压器是连接不同类型和不同电压等级直流输电系统、构建直流电网的关键设备。该文提出一种适用于连接基于电网换相换流器(line commutated converter,LCC)的高压直流输电(high voltage direct current,HVDC)系统和基于电压源换流器(voltage source converter,VSC)的高压直流输电系统的直流互联变压器。当LCC-HVDC工作在常态潮流工况下,提出的直流互联变压器与已有的文献相比,交流环流小,效率高。当LCC-HVDC工作在反转潮流工况下,直流互联变压器能够跟踪改变LCC侧电压极性。详细分析直流互联变压器在不同工况下的工作原理、调制方式和控制策略,并搭建基于Matlab/Simulink的仿真模型,验证理论分析的正确性。  相似文献   

4.
推导直流–直流自耦变压器(DC/DC autotransformer,DC AUTO)内部交流系统的动态特性,设计直流自耦变压器的控制器,分析高压侧直流故障以及低压侧直流故障时,直流自耦变压器的响应特性,提出将MMC1、MMC3部分子模块改造为自阻型子模块以隔离高压侧直流故障及低变比时在MMC1、MMC3额外串联半桥子模块以隔离低压侧直流故障的方法,分析双向直流故障隔离能力对DC AUTO造价的影响,论文随后在PSCAD/EMTDC上搭建一个±320 kV/±500 k V 1 000 MW DC AUTO的仿真算例,验证所提控制器与故障隔离方法的正确性。以测试的DC/DC为例,常规DC/AC/DC技术所需要的换流器总容量为2 000 MW,而DC AUTO技术仅需1 020 MW换流器即具备DC/AC/DC技术的全部功能(包括双向直流故障隔离能力)。常规DC/AC/DC的损耗率约为1.8%,而DC AUTO的损耗率约为0.97%,在低、中变比下,DC AUTO具备取代DC/AC/DC的潜力。  相似文献   

5.
当互联不同电压等级的直流输电系统时,需要利用直流变压器技术。直流自耦变压器凭借其结构特点,被认为是最具经济性的拓扑之一。文章研制了由两电平电压源型换流器组成的直流自耦变压器(DC AUTO)实验样机。通过将双向DC AUTO中特定的电压源换流器闭锁便可将其重构为单向直流自耦变压器。设计了实验样机系统主接线,研究了各VSC换流器单元在不同工作模式下的控制策略及其控制系统架构,提出一种应用于单向直流自耦变压器的带电流保护的双环控制器,详细分析了实验样机的启动方法及其功率传输特性。通过直流功率传输实验验证了不同类型的直流自耦变压器的可行性,实验结果表明,实验样机在稳态直流功率传输、潮流反转等工况下具有较好的静态和动态性能,系统功率响应迅速且跟踪准确。  相似文献   

6.
为了解决现有电网换相换流器(LCC)与模块化多电平换流器(MMC)组成的混合高压直流(HVDC)输电系统采用半桥MMC时不具有直流侧故障清除能力、采用全桥MMC时成本过高的问题,提出了一种使用新型的电流单向型MMC与LCC连接构成的混合直流输电系统。构建了单极800 k V/2 500 MW的双端系统模型,对其启动过程、典型故障过程和功率反转过程进行了仿真,结果表明提出的混合系统具有可行性、直流故障清除能力、短时无功支撑能力和双向功率传输能力。  相似文献   

7.
2018年青海首条特高压直流外送通道—±800 k V青海—河南特高压直流输电工程开工建设,工程基于特高压和电网换相换流器(Line Commutated Converter,LCC)直流输电技术。文章分析特高压直流输电系统无功补偿装置配置方案和无功控制功能,实现各子功能间配合,达到系统无功控制要求。  相似文献   

8.
混合直流输电系统常会出现不同类型的故障,传统控制方法的故障处理时间过长,对此,研究基于换相换流器(LCC)和模块化多电平换流器(MMC)的混合直流输电系统优化控制方法。根据系统结构特征绘制拓扑结构图,建立LCC数学模型和MMC数学模型;利用三角星型接法和星型接法控制整流侧直流电压,实现整流侧LCC的优化控制;利用电压源逆变器(VSC)双闭环控制器对逆变侧MMC进行优化控制;通过从系统直流侧直接充电,减少中间电流转接过程,利用MMC数学模型计算电压调制波,实现均衡电压,控制系统稳定运行。仿真结果表明,应用所提方法可以在5 s内控制整流站交流故障,面对直流线路单极故障问题,所提方法在5 s内快速反应,将LCC和MMC的电流控制在稳定的区间内,同时对三组电流的控制均有较好的效果,能够实现混合直流输电系统优化控制,快速解决输电系统故障。  相似文献   

9.
提出具备阻断直流故障电流的两端口直流–直流自耦变压器。共提出两种方案,分别为将直流自耦变的第一、第三换流器改造为具备阻断直流故障电流能力的换流器,以及在直流自耦变直流高低压直流端口间安装直流断路器。论述了两种方案的拓扑结构,推导了两种方案下所使用的换流器总容量随变比的关系,分析结果表明,安装直流断路器的方案所使用的换流器总容量少于改造换流器的方案。仿真验证了加装直流断路器方案的有效性,结果表明,在变比为1~2.5的范围内,两种方案下,具备阻断直流故障电流的直流–直流自耦变压器所使用的换流器总容量始终小于1.3倍互联功率,且所使用换流器总容量随变比降低而降低;而常规的直流–交流–直流变换技术无论变比如何变化,所使用的换流器总容量始终为2倍的互联功率。在PSCAD/EMTDC下仿真验证了所提出的保护方案的正确性。  相似文献   

10.
该文研究了一种单向直流–直流自耦变压器。该单向直流自耦变压器由电压源型换流器与不控整流器串联而成,包括升压型单向直流自耦变(UUDAT)和降压型单向直流自耦变(DUDAT)两类拓扑。提出UUDAT以及DUDAT的直流功率控制策略,分析了高压直流系统故障以及低压直流系统故障下,UUDAT和DUDAT的直流故障响应并提出相应的故障隔离措施,评估了直流故障隔离能力对UUDAT和DUDAT造价的影响。在PSCAD/EMTDC下通过对±320kV/±500kV,1000MW的UUDAT和DUDAT的仿真,验证了UUDAT和DUDAT的技术可行性。由于使用了自耦技术,UUDAT和DUDAT相比于常规的DC-AC-DC型单向DC/DC可以较大地节省所使用的电压源型换流器、不控整流器和交流链路的容量。  相似文献   

11.
基于PSASP的直流系统用户自定义建模   总被引:1,自引:1,他引:1  
针对大规模交直流电力系统机电暂态仿真时采用程序缺省的直流输电模型不能有效描述实际直流输电特性的问题,以实际直流系统为参考,利用PSASP用户自定义建模环境,采用注入功率法建立高压直流用户自定义模型。此自定义直流模型由潮流模型和稳定模型2部分组成,稳定模型涵盖实际直流控制器的主要控制功能模型以及变压器分接头控制、无功控制等辅助功能模型。以EPRI-7节点系统为例,研究在不同工作状态下自定义直流模型系统的特性,仿真结果证明了模型的合理性。  相似文献   

12.
无功控制功能是特高压直流输电工程设计的重要组成部分,目的是满足换流站的直流系统无功需求、滤除交流侧谐波、保持交流侧母线电压稳定的要求。±800 k V普洱换流站是云广Ⅱ回特高压直流输电工程中的整流站,其直流站控系统中无功控制功能的电压有效性选择逻辑存在缺陷,文中提出了优化的措施,对特高压直流输电工程的可靠运行有着重要意义。  相似文献   

13.
为了研究呼辽±500 k V直流输电工程主设备故障的电气特征,有效区分各主设备故障,利用电磁暂态仿真软件PSCAD/EMTDC建立了呼辽±500 k V直流输电系统的详细模型,对高压直流输电系统主设备进行了详细介绍,并在此基础上对逆变侧主设备故障进行了仿真分析。仿真结果表明,交流滤波器故障后,逆变侧直流电压和电流变化很小。换流变压器故障后,逆变侧直流电压、电流持续振荡,系统失去稳定。平波电抗器发生短路故障后,逆变侧直流电流发生明显波动,且含有大量的谐波分量,逆变侧直流电压略微降低。最后,基于小波变换理论,分析和提取各故障情况下电气量的特征信息,有效地识别各类故障。  相似文献   

14.
在多端柔性直流输电中,存在换流站不能完全控制各线路潮流的问题。为了实现潮流的灵活控制,提出一种电感共用式线间直流潮流控制器。该潮流控制器通过在两条输电线路中各串入一个电容,利用共用电感进行功率交换,实现潮流控制,其拓扑结构和控制都较为简单,可模块化,适用于多端直流电网。首先分析了该潮流控制器的工作原理及控制策略,然后在PLECS仿真软件中搭建三端直流输电系统进行验证。仿真结果表明,电感共用式线间直流潮流控制器在正常供电、换流站功率缺失等多种工况下,对直流输电系统潮流进行了灵活和准确的控制。  相似文献   

15.
在多端直流输电系统中引入直流潮流控制器可有效增加直流潮流的控制维度,提高主动潮流分配与协调控制能力。该文构建了一种适用于多端直流输电系统的复合型直流潮流控制器框架结构,并给出一种复合型直流潮流控制器的具体拓扑实现方案,可主动控制2条输电线路的潮流。围绕工作原理和控制策略,本文对该拓扑进行详细理论分析,并同时开展仿真与实验验证,仿真和实验结果均证明该潮流控制器可实现多种工况下对2条线路主动潮流控制,具有良好的应用前景。  相似文献   

16.
在西电东送、南北互供、全国联网的电力系统发展目标下.电力变压器(含自耦变压器)将是发展中的主要输变电设备之一。随者输电电压等级提升到最高系统电压800kV,三柯变压器的单台容量将达到840MVA,单相变压器或自耦变压器的单台容量将达纠333MVA及500MVA,高压直流输电电压已达±500kV,双极输送容量达3000MW。因此——为满足电力系统安全必须提高变压器的运行可靠性。  相似文献   

17.
适用于多端柔性直流输电系统的直流潮流控制器   总被引:2,自引:1,他引:1  
重点关注适用于多端柔性直流输电系统的直流潮流控制技术,在分析已有直流潮流控制技术基础上,文中提出了一种适用于多端柔性直流输电系统的线间直流潮流控制器,其具有结构简单、所需元器件少以及无需外部电源等优点。对一个包含该线间直流潮流控制器的三端环网式直流输电系统进行研究,分析了该控制器的工作原理及运行特性。在PSCAD/EMTDC中搭建了该系统的仿真模型,对其进行稳态、动态以及故障情况下的仿真验证。仿真结果表明,该线间直流潮流控制器在多种工况下都可以有效地实现直流潮流控制,并保持良好的稳定性。  相似文献   

18.
现有的直流潮流控制器大多为双端且仅能辅助控制一条线路上的潮流。为全面控制直流电网潮流分布,文中提出了一种适用于柔性直流电网的多端口直流潮流控制器,它可以同时控制多条线路上的潮流且易于拓展。首先,在充分研究已有直流潮流控制器的基础上,提出了多端口直流潮流控制器的拓扑结构并详细阐述了工作原理;其次,研究了多端口直流潮流控制器的等效电路,进而设计了能够使其稳定运行的控制策略;最终,在RT-LAB仿真平台中搭建了舟山五端柔性直流输电系统并安装了三端口直流潮流控制器,对所提拓扑结构和控制策略进行了仿真验证。  相似文献   

19.
直流潮流控制技术是直流电网中的关键技术之一,对于直流电网的发展具有重要意义。提出了一种新型线间直流潮流控制器拓扑,该电路拓扑结构和控制较简单,可实现线路潮流反转。分析了该潮流控制器的工作原理和运行特性,并搭建了潮流控制器和五端直流输电系统仿真模型,对该潮流控制器进行了稳态、动态以及故障情况下的仿真验证。仿真结果表明,该潮流控制器可实现潮流的有效控制和调节,具有良好的稳定性。  相似文献   

20.
分析了准东—皖南?1100 k V特高压直流示范工程的特点以及哈郑和溪浙?800 k V直流工程现场系统试验发现的主要技术问题。重点对受端高低端换流器分层接入500 k V/1000 k V交流电网控制保护性能、附加功率控制以及安稳装置的接口问题进行了分析。基于上述分析结果,结合?1100 k V特高压直流系统仿真计算分析结果,提出了系统试验项目,内容包括:基本的控制保护、监控、设备性能试验项目、换流站辅助系统试验、换流器控制与阀基电子接口试验、分层接入试验、换流变产气验证试验、融冰方式试验和直流偏磁测试试验等。这些研究成果为编制系统试验方案奠定了技术基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号