首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The intermetallic compound ZnSb has been known since the 1830s. It has semiconductor properties, but its mechanical, thermal, and chemical properties are very close to those of a metallic alloy. When thermoelectrics based on (BiSb)2(TeSe)3 solid solutions were created, interest in ZnSb subsided. However, the current situation is different, as tellurium has become expensive and rare. Moreover, its compounds are too toxic, and it is too difficult to produce such materials and devices from these solid solutions. Recently, n-type material based on Mg2(SnSi) solid solution was proposed in the Laboratory of Physics for Thermoelements of the Ioffe Physical-Technical Institute. This material together with ZnSb may form a promising couple for creating various thermoelectric modules. In this paper, various properties (Hall and Seebeck coefficients, electrical and thermal conductivities) are reported in the temperature range from 80 K to 797 K. Different acceptor impurities have been tested. The Hall concentration at room temperature varied from 1.5 × 1018 cm?3 to 2.7 × 1019 cm?3. Some features have been discovered in the behavior of the thermoelectric parameters of double-doped ZnSb samples at temperatures above 500 K. Their nature points to a temperature-dependent increase of the Hall concentration. The existence of two temperature ranges with additional doping is revealed by Hall coefficient and electrical conductivity measurements in the range from 80 K to 797 K. The experimental data are discussed based on a model of the energy spectrum with impurity and native defect states localized in the energy gap. It is shown that the dimensionless thermoelectric figure of merit of ZnSb: Cd, Ag, Sn is not less than 1.0 at 600 K.  相似文献   

2.
Iodine-doped CdMgTe/CdSeTe double heterostructures (DHs) have been grown by molecular beam epitaxy and studied using time-resolved photoluminescence (PL), focusing on absorber layer thickness of 2 μm. The n-type free carrier concentration was varied to ~7 × 1015 cm?3, 8.4 × 1016 cm?3, and 8.4 × 1017 cm?3 using iodine as dopant in DHs. Optical injection at 1 × 1010 photons/pulse/cm2 to 3 × 1011 photons/pulse/cm2, corresponding to initial injection of photocarriers up to ~8 × 1015 cm?3, was applied to examine the effects of excess carrier concentration on the PL lifetimes. Iodine-doped DHs exhibited an initial rapid decay followed by a slower decay at free carrier concentration of 7 × 1015 cm?3 and 8.4 × 1016 cm?3. The optical injection dependence of the carrier lifetimes for DHs was interpreted based on the Shockley–Read–Hall model. The observed decrease in lifetime with increasing n is consistent with growing importance of radiative recombination.  相似文献   

3.
Iodine-doped CdTe and Cd1?x Mg x Te layers were grown by molecular beam epitaxy. Secondary ion mass spectrometry characterization was used to measure dopant concentration, while Hall measurement was used for determining carrier concentration. Photoluminescence intensity and time-resolved photoluminescence techniques were used for optical characterization. Maximum n-type carrier concentrations of 7.4 × 1018 cm?3 for CdTe and 3 × 1017 cm?3 for Cd0.65Mg0.35Te were achieved. Studies suggest that electrically active doping with iodine is limited with dopant concentration much above these values. Dopant activation of about 80% was observed in most of the CdTe samples. The estimated activation energy is about 6 meV for CdTe and the value for Cd0.65Mg0.35Te is about 58 meV. Iodine-doped samples exhibit long lifetimes with no evidence of photoluminescence degradation with doping as high as 2 × 1018 cm?3, while indium shows substantial non-radiative recombination at carrier concentrations above 5 × 1016 cm?3. Iodine was shown to be thermally stable in CdTe at temperatures up to 600°C. Results suggest iodine may be a preferred n-type dopant compared to indium in achieving heavily doped n-type CdTe.  相似文献   

4.
The thermoelectric properties of I-doped Bi2Te3 films grown by metal-organic chemical vapor deposition have been studied. I-doped epitaxial (00l) Bi2Te3 films were successfully grown on 4° tilted GaAs (001) substrates at 360 °C. I concentration in the Bi2Te3 films was easily controlled by the variation in a flow rate of H2 carrier gas for the delivery of an isopropyliodide precursor. As I ions in the as-grown Bi2Te3 films were not fully activated, they did not influence the carrier concentration and thermoelectric properties. However, a post-annealing process at 400 °C activated I ions as a donor, accompanied with an increase in the carrier concentration. Interestingly, the I-doped Bi2Te3 films after the post-annealing process also exhibited enhancement of the Seebeck coefficient at the same electron concentration compared to un-doped Bi2Te3 films. Through doping I ions into Bi2Te3, the thermopower was also enhanced in Bi2Te3, and a high power factor of 5 × 10?3 W K?2 m?1 was achieved.  相似文献   

5.
p-Type Yb z Fe4?x Co x Sb12 skutterudites were prepared by encapsulated melting and hot pressing, and the filling and doping (charge compensation) effects on the transport and thermoelectric properties were examined. The electrical conductivity of all specimens decreased slightly with increasing temperature, indicating that they were in a degenerate state due to high carrier concentrations of 1020 cm?3 to 1021 cm?3. The Hall and Seebeck coefficients exhibited positive signs, indicating that the majority carriers are holes (p-type). The Seebeck coefficient increased with increasing temperature to maximum values of 100 μV/K to 150 μV/K at 823 K. The electrical and thermal conductivities were reduced by substitution of Co for Fe, which was responsible for the decreased carrier concentration. Overall, the Yb-filled Fe-rich skutterudites showed better thermoelectric performance than the Yb-filled Co-rich skutterudites.  相似文献   

6.
The influence of dopant concentration on both in-plane mobility and minority carrier lifetime in long-wave infrared InAs/InAsSb superlattices (SLs) was investigated. Unintentially doped (n-type) and various concentrations of Be-doped (p-type) SLs were characterized using variable-field Hall and photoconductive decay techniques. Minority carrier lifetimes in p-type InAs/InAsSb SLs are observed to decrease with increasing carrier concentration, with the longest lifetime at 77 K determined to be 437 ns, corresponding to a measured carrier concentration of p 0 = 4.1 × 1015 cm?3. Variable-field Hall technique enabled the extraction of in-plane hole, electron, and surface electron transport properties as a function of temperature. In-plane hole mobility is not observed to change with doping level and increases with reducing temperature, reaching a maximum at the lowest temperature measured of 30 K. An activation energy of the Be-dopant is determined to be 3.5 meV from Arrhenius analysis of hole concentration. Minority carrier electrons populations are suppressed at the highest Be-doping levels, but mobility and concentration values are resolved in lower-doped samples. An average surface electron conductivity of 3.54 × 10?4 S at 30 K is determined from the analysis of p-type samples. Effects of passivation treatments on surface conductivity will be presented.  相似文献   

7.
Al/Sb double-doped Mg2Si0.75Sn0.25 materials were prepared by liquid–solid reaction synthesis and the hot-pressing technique. The effects of Al/Sb double doping on the thermoelectric properties were investigated at temperatures between room temperature and 900 K, and the resistivity and Hall coefficient were investigated at 80 K to 900 K. Al/Sb double-doped samples were found to be n-type semiconductors in the investigated temperature range. The absolute Seebeck coefficient (α), resistivity (ρ), and thermal conductivity (κ) for Al/Sb double-doped samples at room temperature were in the ranges of 152.5 μV K?1 to 109.2 μV K?1, 2.92 × 10?5 Ω m to 1.29 × 10?5 Ω m, and 2.50 W K?1 m?1 to 2.86 W K?1 m?1, respectively. The absolute values of α increased with increasing temperature up to a maximum, and decreased thereafter. This could be attributed to mixed carrier conduction in the intrinsic region. κ decreased linearly with increasing temperature to a minimum near the intrinsic region, then increased rapidly because of bipolar components. The highest ZT value measured was 0.94 at 850 K for Mg1.9975Al0.0025Si0.75Sn0.2425Sb0.0075. Sb doping was effective for enhancement of ZT, because of a remarkable increase in the carrier concentration. However, Al doping was almost ineffective for enhancing ZT.  相似文献   

8.
Compact polycrystalline samples of SrZn2Sb2 [space group $ P\overline{3} m1 $ , a = 4.503(1) Å, c = 7.721(1) Å] were prepared by spark plasma sintering. Thermoelectric performance, Hall effect, and magnetic properties were investigated in the temperature range from 2 K to 650 K. The thermoelectric figure of merit ZT was found to increase with temperature up to ZT = 0.15 at 650 K. At this temperature the material showed a high Seebeck coefficient of +230 μV K?1, low thermal conductivity of 1.3 W m?1 K?1, but rather low electrical conductivity of 54 S cm?1, together with a complex temperature behavior. SrZn2Sb2 is a diamagnetic p-type conductor with a carrier concentration of 5 × 1018 cm?3 at 300 K. The electronic structure was calculated within the density-functional theory (DFT), revealing a low density of states (DOS) of 0.43 states eV?1 cell?1 at the Fermi level.  相似文献   

9.
In this work, heavily doped ZnO thin films with carrier concentrations of 1.7 × 1020–1.1 × 1021 cm?3 were prepared on glass substrates using direct current magnetron sputtering combined with rapid thermal annealing (RTA). The effects of RTA on the electrical transport properties of the thin films were investigated. Results showed that the resistivities of the thin films deposited at low temperatures were markedly improved due to the increased mobilities and/or carrier concentrations. Temperature-dependent Hall measurements and theoretical calculations suggested that the influence of grain boundary scattering was negligible for all the samples and the mobility was mainly determined by ionized impurity scattering. The influence of crystallographic defects on the mobility could be effectively reduced via RTA when the carrier concentration was above 4.0 × 1020 cm?3, resulting in a mobility and resistivity close to the ionized impurity scattering theoretical estimation. The highest mobility of 46 cmV?1 s?1 at the resistivity of 2.8 × 10?4 Ω cm and the lowest resistivity of 2.6 × 10?4 Ω cm were achieved for the RTA-treated 1 wt.% Al-doped ZnO and 5 wt.% Ga-doped ZnO thin films, respectively.  相似文献   

10.
The properties of ZnO thin films codoped with lithium and phosphorus have been characterized. The films were deposited from high-purity ZnO and Li3PO4 solid targets onto c-plane sapphire substrates by radiofrequency (RF) magnetron sputtering. A substrate temperature of 900°C was determined as optimum for depositing undoped ZnO films with background electron concentration of 9.9 × 1015 cm?3 as the buffer layer on the sapphire substrate. Postdeposition annealing was carried out using rapid thermal processing in O2 at temperatures ranging from 500°C to 1000°C for 3 min. Analyses performed using low-temperature photoluminescence spectroscopy measurements revealed luminescence peaks at 3.356 eV, 3.307 eV, 3.248 eV, and 3.203 eV at 12 K for the codoped samples. X-ray diffraction 2θ-scans showed a single peak at about 34.4° with full-width at half-maximum of about 0.09°. Hall-effect measurements revealed initial p-type conductivities, but these were unstable and toggled between p-type and n-type over time with Hall concentrations that varied between 2.05 × 1013 cm?3 and 2.89 × 1015 cm?3. The fluctuation in the carrier type could be due to lateral inhomogeneity in the hole concentration caused by stacking faults in the films. An additional cause could be the small Hall voltages in the measurements, which could be significantly impacted by even small spikes in signal noise inherent in the measurements.  相似文献   

11.
Since Bi2Te3 and Bi2Se3 have the same crystal structure, they form a homogeneous solid solution. Therefore, the thermal conductivity of the solid solution can be reduced by phonon scattering. The thermoelectric figure of merit can be improved by controlling the carrier concentration through doping. In this study, Bi2Te2.85Se0.15:D m (D: dopants such as I, Cu, Ag, Ni, Zn) solid solutions were prepared by encapsulated melting and hot pressing. All specimens exhibited n-type conduction in the measured temperature range (323 K to 523 K), and their electrical conductivities decreased slightly with increasing temperature. The undoped solid solution showed a carrier concentration of 7.37 × 1019 cm?3, power factor of 2.1 mW m?1 K?1, and figure of merit of 0.56 at 323 K. The figure of merit (ZT) was improved due to the increased power factor by I, Cu, and Ag dopings, and maximum ZT values were obtained as 0.76 at 323 K for Bi2Te2.85Se0.15:Cu0.01 and 0.90 at 423 K for Bi2Te2.85Se0.15:I0.005. However, the thermoelectric properties of Ni- and Zn-doped solid solutions were not enhanced.  相似文献   

12.
Thermoelectric technology has not yet been able to reach full-scale market penetration partly because most commercial materials employed are scarce/costly, environmentally unfriendly and in addition provide low conversion efficiency. The necessity to tackle some of these hurdles leads us to investigate the suitability of n-type hydrogenated microcrystalline silicon (μc-Si: H) in the fabrication of thermoelectric devices, produced by plasma enhanced chemical vapour deposition (PECVD), which is a mature process of proven scalability. This study reports an approach to optimise the thermoelectric power factor (PF) by varying the dopant concentration by means of post-annealing without impacting film morphology, at least for temperatures below 550°C. Results show an improvement in PF of more than 80%, which is driven by a noticeable increase of carrier mobility and Seebeck coefficient in spite of a reduction in carrier concentration. A PF of 2.08 × 10?4 W/mK2 at room temperature is reported for n-type films of 1 μm thickness, which is in line with the best values reported in recent literature for similar structures.  相似文献   

13.
Ab-initio calculations using the full potential linearized augmented plane-wave technique and the semi-classical Boltzmann theory are used to study thermoelectric properties of unstrained SnS and at 1%, 2% and 3% applied biaxial tensile (BT) strain. The studies are carried out at 800 K for p-type and n-type carriers. For an increase in BT strain, lattice constants of SnS change causing changes in the band structure and increase in the band gap which in turn modifies thermoelectric coefficients. In the case of unstrained SnS, the maximum thermopower (S) obtained is 426 μV/K at carrier concentration 5.40?×?1018 cm?3 for p-type carriers and 435 μV/K at carrier concentration 1.68?×?1018 cm?3 for n-type carriers. At 3% applied BT strain, S is increased to 696 μV/K at carrier concentration 4.61?×?1017 cm?3 for p-type carriers and 624 μV/K at carrier concentration 3.21?×?1017 cm?3 for n-type carriers. The power factor (PF) increases?~?2 times at 3% BT strain as compared to unstrained SnS, and it is 6.20 mW K?2 m?1 for p-type carriers. For n-type carriers, PF at 3% applied BT is slightly less than the PF for unstrained SnS, which is 6.81 mW K?2 m?1. For both types of carriers, the figure of merit (ZT) is found to be?~?1.5 for unstrained SnS. For p-type carriers ZT is enhanced 1.4 times at 3% applied BT strain as compared to that of unstrained SnS. However, for n-type carriers, ZT does not change drastically with increase in BT strain.  相似文献   

14.
Ultra-low-doped mercury cadmium telluride (HgCdTe, or MCT) is of significant interest for infrared detectors designed to suppress Auger recombination. Measurement of low doping levels in multi-layered structures is difficult with traditional 4-point Hall effect measurements. Multi-layered Hg.79Cd.21Te samples were analyzed using variable magnetic field Hall effect measurements and a multi-carrier fitting procedure. The measurements resolve two distinct carrier species corresponding to surface and/or buffer layer conduction and conduction through the primary low-doped material. High-quality electronic transport is achieved, including the demonstration of an epitaxial layer (x = 0.2195) with n = 1.09 × 1014 cm?3 and μ = 275,000 cm2/Vs at 77 K. This technique shows promise as a way to analyze layers with significantly lower doping, and a starting point to understand and advance the development of HgCdTe epilayers with very low doping concentration.  相似文献   

15.
p-Type antimony telluride (Sb2Te3) thermoelectric thin films were deposited on BK7 glass substrates by ion beam sputter deposition using a fan-shaped binary composite target. The deposition temperature was varied from 100°C to 300°C in increments of 50°C. The influence of the deposition temperature on the microstructure, surface morphology, and thermoelectric properties of the thin films was systematically investigated. x-Ray diffraction results show that various alloy composition phases of the Sb2Te3 materials are grown when the deposition temperature is lower than 200°C. Preferred c-axis orientation of the Sb2Te3 thin film became obvious when the deposition temperature was above 200°C, and thin film with single-phase Sb2Te3 was obtained when the deposition temperature was 250°C. Scanning electron microscopy reveals that the average grain size of the films increases with increasing deposition temperature and that the thin film deposited at 250°C shows rhombohedral shape corresponding to the original Sb2Te3 structure. The room-temperature Seebeck coefficient and electrical conductivity range from 101 μV K?1 to 161 μV K?1 and 0.81 × 103 S cm?1 to 3.91 × 103 S cm?1, respectively, as the deposition temperature is increased from 100°C to 300°C. An optimal power factor of 6.12 × 10?3 W m?1 K?2 is obtained for deposition temperature of 250°C. The thermoelectric properties of Sb2Te3 thin films have been found to be strongly enhanced when prepared using the fan-shaped binary composite target method with an appropriate substrate temperature.  相似文献   

16.
The effects of growth temperature and annealing on the physical properties of Zn3Sn2O7 thin films were investigated in this work. The Zn3Sn2O7 thin films were deposited on glass substrates by radio frequency (rf) magnetron sputtering. It is found that the films are amorphous regardless of the growth temperature. The film grown at room temperature shows the highest mobility of 8.1 cm2 V?1 s?1 and the lowest carrier concentration of 2.0 × 1015 cm?3. The highest carrier concentration of 1.6 × 1019 cm?3 is obtained at the growth temperature of 250°C. Annealing treatment of the Zn3Sn2O7 thin films resulted in increases of carrier concentration and mobility. The average transmittance of the as-deposited and annealed films reaches 80%. By using a Zn3Sn2O7 thin film as the channel and a Ta2O5 thin film as the insulating layer, we fabricated transparent Zn3Sn2O7 thin-film transistors with field-effect mobility of 21.2 cm2 V?1 s?1, on/off current ratio of 105, threshold voltage of 0.8 V, and subthreshold swing of 0.8 V/decade.  相似文献   

17.
Mercury cadmium telluride (HgCdTe, or MCT) with low n-type indium doping concentration offers a means for obtaining high performance infrared detectors. Characterizing carrier transport in materials with ultra low doping (ND?=?1014 cm?3 and lower), and multi-layer material structures designed for infrared detector devices, is particularly challenging using traditional methods. In this work, Hall effect measurements with a swept B-field were used in conjunction with a multi-carrier fitting procedure and Fourier-domain mobility spectrum analysis to analyze multi-layered MCT samples. Low temperature measurements (77 K) were able to identify multiple carrier species, including an epitaxial layer (x?=?0.2195) with n-type carrier concentration of n?=?1?×?1014 cm?3 and electron mobility of μ?=?280000 cm2/Vs. The extracted electron mobility matches or exceeds prior empirical models for MCT, illustrating the outstanding material quality achievable using current epitaxial growth methods, and motivating further study to revisit previously published material parameters for MCT carrier transport. The high material quality is further demonstrated via observation of the quantum Hall effect at low temperature (5 K and below).  相似文献   

18.
A unique ampoule rotation system was developed at the Center for Materials Research at Washington State University for enhancing convection in the cadmium zinc telluride (CZT) melt by applying different ampoule rotation schemes (RS). Experiments were performed with different initial charge material concentrations and rotation parameters (acceleration, speed, rotation time, etc.). The applied speed and acceleration ranged from 30 rpm to 50 rpm and 30 rpm2 to 200 rpm2, respectively. Zinc (Zn) distribution profiles of radial and axial slices from the same regions in the grown ingot were determined by room-temperature photoluminescence mapping. The results demonstrate the effects of ampoule rotation on Zn segregation and growth interface evolution. The most stable interface propagation was obtained when 0.2 atomic percent (at.%) excess tellurium (Te) was used in the initial charge material along with a trapezoidal RS. Uniform radial Zn distribution was achieved using triangular RS, which is because of the interface flatness near the axis. Comparison of secondary phase (SP) generation for different RS and initial excess Te was performed. Closed-container CZT growth was performed using the trapezoidal RS, which resulted in high single-crystal yield with lower-diameter SP near the last-to-freeze region. High-resistivity (on the order of 1010 Ω-cm) crystals were obtained from all the RS. The mobility–lifetime product (μτ)e of electrons for planar detectors was found to be on the order of 3 × 10?3 cm2/V to 5 × 10?3 cm2/V for all the RS with 3.5 at.% excess Te growths.  相似文献   

19.
The temperature dependence of the thermoelectric properties was investigated for polyaniline (PANI) films doped with different concentrations of (±)-10-camphorsulfonic acid (CSA) with molar ratio x of CSA to two phenyl-nitrogen units of x = 1 to 0.2. All PANI-CSA films exhibit p-type conduction. The temperature dependence of the electrical conductivity of the films with low CSA concentrations is consistent with a transport mechanism of variable-range hopping. On the other hand, the Seebeck coefficient above room temperature shows a linear increase with temperature, attributed to the metallic nature of PANI-CSA. As the CSA concentration decreases, the absolute value of the Seebeck coefficient increases while the electrical conductivity extremely decreases, probably due to the changes not only in the carrier concentration but also in the degree of structural disorder. The power factor increases monotonically with increasing CSA concentration toward x = 1 (the maximum limit). The thermal conductivity value of CSA-PANI film with x = 1 is as low as about 0.20 W m?1 K?1 in the through-plane direction and about 0.67 W m?1 K?1 in the in-plane direction. The thermoelectric figure of merit ZT in the in-plane direction is estimated to be approximately 1 × 10?3 for x = 1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号