共查询到20条相似文献,搜索用时 0 毫秒
1.
High Temperature‐Stable Perovskite Solar Cell Based on Low‐Cost Carbon Nanotube Hole Contact 下载免费PDF全文
Kerttu Aitola Konrad Domanski Juan‐Pablo Correa‐Baena Kári Sveinbjörnsson Michael Saliba Antonio Abate Michael Grätzel Esko Kauppinen Erik M. J. Johansson Wolfgang Tress Anders Hagfeldt Gerrit Boschloo 《Advanced materials (Deerfield Beach, Fla.)》2017,29(17)
Mixed ion perovskite solar cells (PSC) are manufactured with a metal‐free hole contact based on press‐transferred single‐walled carbon nanotube (SWCNT) film infiltrated with 2,2,7,‐7‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,90‐spirobifluorene (Spiro‐OMeTAD). By means of maximum power point tracking, their stabilities are compared with those of standard PSCs employing spin‐coated Spiro‐OMeTAD and a thermally evaporated Au back contact, under full 1 sun illumination, at 60 °C, and in a N2 atmosphere. During the 140 h experiment, the solar cells with the Au electrode experience a dramatic, irreversible efficiency loss, rendering them effectively nonoperational, whereas the SWCNT‐contacted devices show only a small linear efficiency loss with an extrapolated lifetime of 580 h. 相似文献
2.
Zhifang Wu Zonghao Liu Zhanhao Hu Zafer Hawash Longbin Qiu Yan Jiang Luis K. Ono Yabing Qi 《Advanced materials (Deerfield Beach, Fla.)》2019,31(11)
Perovskite solar cells (PSCs) have attracted great attention in the past few years due to their rapid increase in efficiency and low‐cost fabrication. However, instability against thermal stress and humidity is a big issue hindering their commercialization and practical applications. Here, by combining thermally stable formamidinium–cesium‐based perovskite and a moisture‐resistant carbon electrode, successful fabrication of stable PSCs is reported, which maintain on average 77% of the initial value after being aged for 192 h under conditions of 85 °C and 85% relative humidity (the “double 85” aging condition) without encapsulation. However, the mismatch of energy levels at the interface between the perovskite and the carbon electrode limits charge collection and leads to poor device performance. To address this issue, a thin‐layer of poly(ethylene oxide) (PEO) is introduced to achieve improved interfacial energy level alignment, which is verified by ultraviolet photoemission spectroscopy measurements. Indeed as a result, power conversion efficiency increases from 12.2% to 14.9% after suitable energy level modification by intentionally introducing a thin layer of PEO at the perovskite/carbon interface. 相似文献
3.
Neha Arora M. Ibrahim Dar Seckin Akin Ryusuke Uchida Thomas Baumeler Yuhang Liu Shaik Mohammed Zakeeruddin Michael Grtzel 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(49)
Today's perovskite solar cells (PSCs) mostly use components, such as organic hole conductors or noble metal back contacts, that are very expensive or cause degradation of their photovoltaic performance. For future large‐scale deployment of PSCs, these components need to be replaced with cost‐effective and robust ones that maintain high efficiency while ascertaining long‐term operational stability. Here, a simple and low‐cost PSC architecture employing dopant‐free TiO2 and CuSCN as the electron and hole conductor, respectively, is introduced while a graphitic carbon layer deposited at room temperature serves as the back electrical contact. The resulting PSCs show efficiencies exceeding 18% under standard AM 1.5 solar illumination and retain ≈95% of their initial efficiencies for >2000 h at the maximum power point under full‐sun illumination at 60 °C. In addition, the CuSCN/carbon‐based PSCs exhibit remarkable stability under ultraviolet irradiance for >1000 h while under similar conditions, the standard spiro‐MeOTAD/Au based devices degrade severely. 相似文献
4.
Munkhbayar Batmunkh Mark J. Biggs Joseph G. Shapter 《Small (Weinheim an der Bergstrasse, Germany)》2015,11(25):2963-2989
As one type of emerging photovoltaic cell, dye‐sensitized solar cells (DSSCs) are an attractive potential source of renewable energy due to their eco–friendliness, ease of fabrication, and cost effectiveness. However, in DSSCs, the rarity and high cost of some electrode materials (transparent conducting oxide and platinum) and the inefficient performance caused by slow electron transport, poor light‐harvesting efficiency, and significant charge recombination are critical issues. Recent research has shown that carbon nanotubes (CNTs) are promising candidates to overcome these issues due to their unique electrical, optical, chemical, physical, as well as catalytic properties. This article provides a comprehensive review of the research that has focused on the application of CNTs and their hybrids in transparent conducting electrodes (TCEs), in semiconducting layers, and in counter electrodes of DSSCs. At the end of this review, some important research directions for the future use of CNTs in DSSCs are also provided. 相似文献
5.
Versatility of Carbon Enables All Carbon Based Perovskite Solar Cells to Achieve High Efficiency and High Stability 下载免费PDF全文
Xiangyue Meng Junshuai Zhou Jie Hou Xia Tao Sin Hang Cheung Shu Kong So Shihe Yang 《Advanced materials (Deerfield Beach, Fla.)》2018,30(21)
Carbon‐based perovskite solar cells (PVSCs) without hole transport materials are promising for their high stability and low cost, but the electron transporting layer (ETL) of TiO2 is notorious for inflicting hysteresis and instability. In view of its electron accepting ability, C60 is used to replace TiO2 for the ETL, forming a so‐called all carbon based PVSC. With a device structure of fluorine‐doped tin oxide (FTO)/C60/methylammonium lead iodide (MAPbI3)/carbon, a power conversion efficiency (PCE) is attained up to 15.38% without hysteresis, much higher than that of the TiO2 ones (12.06% with obvious hysteresis). The C60 ETL is found to effectively improve electron extraction, suppress charge recombination, and reduce the sub‐bandgap states at the interface with MAPbI3. Moreover, the all carbon based PVSCs are shown to resist moisture and ion migration, leading to a much higher operational stability under ambient, humid, and light‐soaking conditions. To make it an even more genuine all carbon based PVSC, it is further attempted to use graphene as the transparent conductive electrode, reaping a PCE of 13.93%. The high performance of all carbon based PVSCs stems from the bonding flexibility and electronic versatility of carbon, promising commercial developments on account of their favorable balance of cost, efficiency, and stability. 相似文献
6.
The recently emerged integrated perovskite/bulk-heterojunction (BHJ) organic solar cells (IPOSCs) without any recombination layers have generated wide attention. This type of device structure can take the advantages of tandem cells using both perovskite solar and near-infrared (NIR) BHJ organic solar materials for wide-range sunlight absorption and the simple fabrication of single junction cells, as the low bandgap BHJ layer can provide additional light harvesting in the NIR region and the high open-circuit voltage can be maintained at the same time. This progress report highlights the recent developments in such IPOSCs and the possible challenges ahead. In addition, the recent development of perovskite solar cells and NIR organic solar cells is also covered to fully underline the importance and potential of IPOSCs. 相似文献
7.
柔性太阳能电池具有轻便、可弯曲的优点,可用于可穿戴设备等器件的即时充电,具有广阔的应用前景,受到持续广泛的关注。柔性太阳能电池制备中的关键在于基材以及与之相关的电极材料的制备。本文综述了柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池近几年的发展情况,着重介绍了柔性染料敏化太阳能电池光阳极、对电极以及柔性钙钛矿太阳能电池的底电极和电子传输层。结果发现高温烧结目前仍是制备高效染料敏化太阳能电池光阳极不可避免的方法,而对电极则不受这一限制并且已经有多种材料的效率超过了高温烧结的铂。柔性钙钛矿太阳能电池的研究重点是用其他材料代替底电极中柔性较差的ITO以及高温烧结的电子传输材料TiO2,并且都取得显著成效。在此基础上,展望了柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池未来的发展方向。 相似文献
8.
9.
Ningyu Ren Bingbing Chen Biao Shi Pengyang Wang Qiaojing Xu Yucheng Li Renjie Li Xinghua Cui Fuhua Hou Tiantian Li Qian Huang Yuelong Li Yi Ding Guofu Hou Xinliang Chen Chengjun Zhu Ying Zhao Anders Hagfeldt Xiaodan Zhang 《Small (Weinheim an der Bergstrasse, Germany)》2020,16(34)
Perovskite solar cells (PSCs) have attracted unprecedented attention due to their rapidly rising photoelectric conversion efficiency (PCE). In order to further improve the PCE of PSCs, new possible optimization path needs to be found. Here, quasi‐heteroface PSCs (QHF‐PSCs) is designed by a double‐layer perovskite film. Such brand new PSCs have good carrier separation capabilities, effectively suppress the nonradiative recombination of the PSCs, and thus greatly improve the open‐circuit voltage and PCE. The root cause of the performance improvement is the benefit from the additional built‐in electric field, which is confirmed by measuring the external quantum efficiency under applied electric field and Kelvin probe force microscope. Meanwhile, an intermediate band gap perovskite layer can be obtained simply by combining a wide band gap perovskite layer with a narrow band gap perovskite layer. Tunability of the band gap is obtained by varying the film thicknesses of the narrow and wide band gap layers. This phenomenon is quite different from traditional inorganic solar cells, whose band gap is determined only by the narrowest band gap layer. It is believed that these QHF‐PSCs will be an effective strategy to further enhance PCE in PSCs and provide basis to further understand and develop the perovskite materials platform. 相似文献
10.
Sigalit Aharon Michael Layani Bat‐El Cohen Efrat Shukrun Shlomo Magdassi Lioz Etgar 《Advanced Materials Interfaces》2015,2(12)
This work reports on the preparation of semitransparent perovskite solar cells. The cells transparency is achieved through a unique wet deposition technique that creates perovskite grids with various dimensions. The perovskite grid is deposited on a mesoporous TiO2 layer, followed by hole transport material deposition and evaporation of a semitransparent gold film. Control of the transparency of the solar cells is achieved by changing the perovskite solution concentration and the mesh openings. The semitransparent cells demonstrate 20–70% transparency with a power conversion efficiency of 5% at 20% transparency. This is the first demonstration of the possibility to create a controlled perovskite pattern using a direct mesh‐assisted assembly deposition method for fabrication of a semitransparent perovskite‐based solar cell. 相似文献
11.
Qi Jiang Zema Chu Pengyang Wang Xiaolei Yang Heng Liu Ye Wang Zhigang Yin Jinliang Wu Xingwang Zhang Jingbi You 《Advanced materials (Deerfield Beach, Fla.)》2017,29(46)
Low temperature solution processed planar‐structure perovskite solar cells gain great attention recently, while their power conversions are still lower than that of high temperature mesoporous counterpart. Previous reports are mainly focused on perovskite morphology control and interface engineering to improve performance. Here, this study systematically investigates the effect of precise stoichiometry, especially the PbI2 contents on device performance including efficiency, hysteresis and stability. This study finds that a moderate residual of PbI2 can deliver stable and high efficiency of solar cells without hysteresis, while too much residual PbI2 will lead to serious hysteresis and poor transit stability. Solar cells with the efficiencies of 21.6% in small size (0.0737 cm2) and 20.1% in large size (1 cm2) with moderate residual PbI2 in perovskite layer are obtained. The certificated efficiency for small size shows the efficiency of 20.9%, which is the highest efficiency ever recorded in planar‐structure perovskite solar cells, showing the planar‐structure perovskite solar cells are very promising. 相似文献
12.
13.
Peng Zhang Jiang Wu Ting Zhang Yafei Wang Detao Liu Hao Chen Long Ji Chunhua Liu Waseem Ahmad Zhi David Chen Shibin Li 《Advanced materials (Deerfield Beach, Fla.)》2018,30(3)
Perovskite solar cells (PSCs) have developed rapidly over the past few years, and the power conversion efficiency of PSCs has exceeded 20%. Such high performance can be attributed to the unique properties of perovskite materials, such as high absorption over the visible range and long diffusion length. Due to the different diffusion lengths of holes and electrons, electron transporting materials (ETMs) used in PSCs play a critical role in PSCs performance. As an alternative to TiO2 ETM, ZnO materials have similar physical properties to TiO2 but with much higher electron mobility. In addition, there are many simple and facile methods to fabricate ZnO nanomaterials with low cost and energy consumption. This review focuses on recent developments in the use of ZnO ETM for PSCs. The fabrication methods of ZnO materials are briefly introduced. The influence of different ZnO ETMs on performance of PSCs is then reviewed. The limitations of ZnO ETM‐based PSCs and some solutions to these challenges are also discussed. The review provides a systematic and comprehensive understanding of the influence of different ZnO ETMs on PSCs performance and potentially motivates further development of PSCs by extending the knowledge of ZnO‐based PSCs to TiO2‐based PSCs. 相似文献
14.
Carbazole‐Based Hole‐Transport Materials for Efficient Solid‐State Dye‐Sensitized Solar Cells and Perovskite Solar Cells 下载免费PDF全文
Bo Xu Esmaeil Sheibani Peng Liu Jinbao Zhang Haining Tian Nick Vlachopoulos Gerrit Boschloo Lars Kloo Anders Hagfeldt Licheng Sun 《Advanced materials (Deerfield Beach, Fla.)》2014,26(38):6629-6634
15.
16.
Slow‐Photon‐Effect‐Induced Photoelectrical‐Conversion Efficiency Enhancement for Carbon‐Quantum‐Dot‐Sensitized Inorganic CsPbBr3 Inverse Opal Perovskite Solar Cells 下载免费PDF全文
All‐inorganic cesium lead halide perovskite is suggested as a promising candidate for perovskite solar cells due to its prominent thermal stability and comparable light absorption ability. Designing textured perovskite films rather than using planar‐architectural perovskites can indeed optimize the optical and photoelectrical conversion performance of perovskite photovoltaics. Herein, for the first time, this study demonstrates a rational strategy for fabricating carbon quantum dot (CQD‐) sensitized all‐inorganic CsPbBr3 perovskite inverse opal (IO) films via a template‐assisted, spin‐coating method. CsPbBr3 IO introduces slow‐photon effect from tunable photonic band gaps, displaying novel optical response property visible to naked eyes, while CQD inlaid among the IO frameworks not only broadens the light absorption range but also improves the charge transfer process. Applied in the perovskite solar cells, compared with planar CsPbBr3, slow‐photon effect of CsPbBr3 IO greatly enhances the light utilization, while CQD effectively facilitates the electron–hole extraction and injection process, prolongs the carrier lifetime, jointly contributing to a double‐boosted power conversion efficiency (PCE) of 8.29% and an increased incident photon‐to‐electron conversion efficiency of up to 76.9%. The present strategy on CsPbBr3 IO to enhance perovskite PCE can be extended to rationally design other novel optoelectronic devices. 相似文献
17.
Charge Transfer from Carbon Nanotubes to Silicon in Flexible Carbon Nanotube/Silicon Solar Cells 下载免费PDF全文
Xiaokai Li Marina Mariano Lyndsey McMillon‐Brown Jing‐Shun Huang Matthew Y. Sfeir Mark A. Reed Yeonwoong Jung André D. Taylor 《Small (Weinheim an der Bergstrasse, Germany)》2017,13(48)
Mechanical fragility and insufficient light absorption are two major challenges for thin flexible crystalline Si‐based solar cells. Flexible hybrid single‐walled carbon nanotube (SWNT)/Si solar cells are demonstrated by applying scalable room‐temperature processes for the fabrication of solar‐cell components (e.g., preparation of SWNT thin films and SWNT/Si p–n junctions). The flexible SWNT/Si solar cells present an intrinsic efficiency ≈7.5% without any additional light‐trapping structures. By using these solar cells as model systems, the charge transport mechanisms at the SWNT/Si interface are investigated using femtosecond transient absorption. Although primary photon absorption occurs in Si, transient absorption measurements show that SWNTs also generate and inject excited charge carriers to Si. Such effects can be tuned by controlling the thickness of the SWNTs. Findings from this study could open a new pathway for designing and improving the efficiency of photocarrier generation and absorption for high‐performance ultrathin hybrid SWNT/Si solar cells. 相似文献
18.
聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)是平面结构钙钛矿太阳电池中空穴传输层的典型材料, 为了改善其导电性能以及促进后续钙钛矿层的生长, 本文将碳纳米管(CNTs)和二甲基亚砜(DMSO)同时引入PEDOT:PSS进行共修饰。结果表明: CNTs和DMSO在CNT-DMSO-PEDOT:PSS共修饰膜中展现了优异的协同效应。均匀贯穿于基体且几近网格状的CNTs具有促进后续钙钛矿层生长及降低共修饰膜方块电阻的功能; DMSO扮演着加强共修饰膜的导电能力及控制CNTs流失的角色。因此, 与单修饰膜相比, 共修饰膜不仅能更有效地传输电荷, 而且其表面生长的钙钛矿层晶粒尺寸更大, 覆盖率更高。此外, 共修饰膜在可见光范围内仍然保持优异的透光率, 550 nm波长处的透光率为88.8%。组装成器件后, 共修饰膜的光电转换效率(PCE)为5.75%, 远高于CNTs和DMSO单修饰膜及纯PEDOT:PSS膜, 后三者的PCE分别为3.01%、2.03%和1.30%。 相似文献
19.
A Strategy to Produce High Efficiency,High Stability Perovskite Solar Cells Using Functionalized Ionic Liquid‐Dopants 下载免费PDF全文
Yi Zhang Zhaofu Fei Peng Gao Yonghui Lee Farzaneh Fadaei Tirani Rosario Scopelliti Yaqing Feng Paul J. Dyson Mohammad Khaja Nazeeruddin 《Advanced materials (Deerfield Beach, Fla.)》2017,29(36)
Functionalized imidazolium iodide salts (ionic liquids) modified with ? CH2? CH?CH2, ? CH2C?CH, or ? CH2C?N groups are applied as dopants in the synthesis of CH3NH3PbI3‐type perovskites together with a fumigation step. Notably, a solar cell device prepared from the perovskite film doped with the salt containing the ? CH2? CH?CH2 side‐chain has a power conversion efficiency of 19.21%, which is the highest efficiency reported for perovskite solar cells involving a fumigation step. However, doping with the imidazolium salts with the ? CH2C?CH and ? CH2C?N groups result in perovskite layers that lead to solar cell devices with similar or lower power conversion efficiencies than the dopant‐free cell. 相似文献
20.
TiO2作为光阳极薄膜材料,广泛应用于染料敏化太阳电池(DSC)中.在TiO2多孔薄膜中掺碳纳米管,不仅可以加快光生电子在TiO2薄膜内的传输,同时也可以增加电子寿命,从而提高染料敏化太阳电池的效率.本文综述了近年来在TiO2中掺碳纳米管的研究成果,简要介绍了碳纳米管在DSC中的作用;归纳了掺杂于TiO2光阳极的碳纳米... 相似文献