首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
An NIR‐responsive mesoporous silica coated upconverting nanoparticle (UCNP) conjugate is developed for controllable drug delivery and fluorescence imaging in living cells. In this work, antitumor drug doxorubicin (Dox) molecules are encapsulated within cross‐linked photocaged mesoporous silica coated UCNPs. Upon 980 nm light irradiation, Dox could be selectively released through the photocleavage of theo‐nitrobenzyl (NB) caged linker by the converted UV emission from UCNPs. This NIR light‐responsive nanoparticle conjugate demonstrates high efficiency for the controlled release of the drug in cancer cells. Upon functionalization of the nanocarrier with folic acid (FA), this photocaged FA‐conjugated silica‐UCNP nanocarrier will also allow targeted intracellular drug delivery and selective fluorescence imaging towards the cell lines with high level expression of folate receptor (FR).  相似文献   

2.
The development of theranostic systems capable of diagnosis, therapy, and target specificity is considerably significant for accomplishing personalized medicine. Here, a multifunctional rattle‐type nanoparticle (MRTN) as an effective biological bimodal imaging and tumor‐targeting delivery system is fabricated, and an enhanced loading ability of hydrophobic anticancer drug (paclitaxel) is also realized. The rattle structure with hydrophobic Fe3O4 as the inner core and mesoporous silica as the shell is obtained by one‐step templates removal process, and the size of interstitial hollow space can be easily adjusted. The Fe3O4 core with hydrophobic poly(tert‐butyl acrylate) (PTBA) chains on the surface is not only used as a magnetic resonance imaging (MRI) agent, but contributes to improving hydrophobic drug loading amount. Transferrin (Tf) and a near‐infrared fluorescent dye (Cy 7) are successfully modified on the surface of the nanorattle to increase the ability of near‐infrared fluorescence (NIRF) imaging and tumor‐targeting specificity. In vivo studies show the selective accumulation of MRTN in tumor tissues by Tf‐receptor‐mediated endocytosis. More importantly, paclitaxel‐loaded MRTN shows sustained release character and higher cytotoxicity than the free paclitaxel. This theranostic nanoparticle as an effective MRI/NIRF bimodal imaging probe and drug delivery system shows great potential in cancer diagnosis and therapy.  相似文献   

3.
Upconversion nanocrystals (UCNs) display near‐infrared (NIR)‐responsive photoluminescent properties for NIR imaging and drug delivery. The development of effective strategies for UCN integration with other complementary nanostructures for targeting and drug conjugation is highly desirable. This study reports on a core/shell‐based theranostic system designed by UCN integration with a folate (FA)‐conjugated dendrimer for tumor targeting and with photocaged doxorubicin as a cytotoxic agent. Two types of UCNs (NaYF4:Yb/Er (or Yb/Tm); diameter = ≈50 to 54 nm) are described, each displaying distinct emission properties upon NIR (980 nm) excitation. The UCNs are surface modified through covalent attachment of photocaged doxorubicin (ONB‐Dox) and a multivalent FA‐conjugated polyamidoamine (PAMAM) dendrimer G5(FA)6 to prepare UCN@(ONB‐Dox)(G5FA). Surface plasmon resonance experiments performed with G5(FA)6 dendrimer alone show nanomolar binding avidity (KD = 5.9 × 10−9m ) to the folate binding protein. This dendrimer binding corresponds with selective binding and uptake of UCN@(ONB‐Dox)(G5FA) by FAR‐positive KB carcinoma cells in vitro. Furthermore, UCN@(ONB‐Dox)(G5FA) treatment of FAR(+) KB cells inhibits cell growth in a light dependent manner. These results validate the utility of modularly integrated UCN‐dendrimer nanocomposites for cell type specific NIR imaging and light‐controlled drug release, thus serving as a new theranostic system.  相似文献   

4.
The downsides of conventional cancer monotherapies are profound and enormously consequential, as drug‐resistant cancer cells and cancer stem cells (CSC) are typically not eliminated. Here, a targeted theranostic nano vehicle (TTNV) is designed using manganese‐doped mesoporous silica nanoparticle with an ideal surface area and pore volume for co‐loading an optimized ratio of antineoplastic doxorubicin and a drug efflux inhibitor tariquidar. This strategically framed TTNV is chemically conjugated with folic acid and hyaluronic acid as a dual‐targeting entity to promote folate receptor (FR) mediated cancer cells and CD44 mediated CSC uptake, respectively. Interestingly, surface‐enhanced Raman spectroscopy is exploited to evaluate the molecular changes associated with therapeutic progression. Tumor microenvironment selective biodegradation and immunostimulatory potential of the MSN‐Mn core are safeguarded with a chitosan coating which modulates the premature cargo release and accords biocompatibility. The superior antitumor response in FR‐positive syngeneic and CSC‐rich human xenograft murine models is associated with a tumor‐targeted biodistribution, favorable pharmacokinetics, and an appealing bioelimination pattern of the TTNV with no palpable signs of toxicity. This dual drug‐loaded nano vehicle offers a feasible approach for efficient cancer therapy by on demand cargo release in order to execute complete wipe‐out of tumor reinitiating cancer stem cells.  相似文献   

5.
Remote optical detection and imaging of specific tumor‐related biomarkers and simultaneous activation of therapy according to the expression level of the biomarkers in tumor site with theranostic probes should be an effective modality for treatment of cancers. Herein, an upconversion nanobeacon (UCNPs‐MB/Dox) is proposed as a new theranostic nanoprobe to ratiometrically detect and visualize the thymidine kinase 1 (TK1) mRNA that can simultaneously trigger the Dox release to activate the chemotherapy accordingly. UCNPs‐MB/Dox is constructed with the conjugation of a TK1 mRNA‐specific molecular beacon (MB) bearing a quencher (BHQ‐1) and an alkene handle modified upconversion nanoparticle (UCNP) through click reaction and subsequently loading with a chemotherapy drug (Dox). With this nanobeacon, quantitative ratiometric upconversion detection of the target with high sensitivity and selectivity as well as the target triggered Dox release in vitro is demonstrated. The sensitive and selective ratiometric detection and imaging of TK1 mRNA under the irradiation of near infrared light (980 nm) and the mRNA‐dependent release of Dox for chemotherapy in the tumor MCF‐7 cells and A549 cells are also shown. This work provides a smart and robust platform for gene‐related tumor theranostics.  相似文献   

6.
Effective drug delivery systems that can systematically and selectively transport payloads to disease cells remain a challenge. Here, a targeting ligand‐modified DNA origami nanostructure (DON) as an antibody–drug conjugate (ADC)‐like carrier for targeted prostate cancer therapy is reported. Specifically, DON of six helical bundles is modified with a ligand 2‐[3‐(1,3‐dicarboxy propyl)‐ureido] pentanedioic acid (DUPA) against prostate‐specific membrane antigen (PSMA), to serve as the antibody for drug conjugation in ADC. Doxorubicin (Dox) is then loaded to DON through intercalation to dsDNA. This platform features in spatially controllable organization of targeting ligands and high drug loading capacity. With this nanocomposite, selective delivery of Dox to the PSMA+ cancer cell line LNCaP is readily achieved. The consequent therapeutic efficacy is critically dependent on the numbers of targeting ligand assembled on DON. This target‐specific and biocompatible drug delivery platform with high maximum tolerated doses shows immense potential for developing novel nanomedicine.  相似文献   

7.
A new theranostic nanoplatform, comprising of monodisperse zirconium metal‐organic frameworks (MOFs) as drug carriers and carboxylatopillar[5]arene‐based supramolecular switches as gating entities, is constructed, and controlled drug release triggered by bio‐friendly Zn2+ ions (abundant in synaptic vesicles) and auxiliary thermal stimulus is realized. This on‐command drug delivery system exhibits large pore sizes for drug encapsulation, excellent biodegradability and biocompatibility, extremely low cytotoxicity and premature drug release, and superior dual‐stimuli responsiveness, opening a new avenue in targeted drug delivery and controlled release of therapeutic agents, especially in the treatment of central nervous system diseases.  相似文献   

8.
Although tremendous efforts have been made on targeted drug delivery systems, current therapy outcomes still suffer from low circulating time and limited targeting efficiency. The integration of cell‐mediated drug delivery and theranostic nanomedicine can potentially improve cancer management in both therapeutic and diagnostic applications. By taking advantage of innate immune cell's ability to target tumor cells, the authors develop a novel drug delivery system by using macrophages as both nanoparticle (NP) carriers and navigators to achieve cancer‐specific drug delivery. Theranostic NPs are fabricated from a unique polymer, biodegradable photoluminescent poly (lactic acid) (BPLP‐PLA), which possesses strong fluorescence, biodegradability, and cytocompatibility. In order to minimize the toxicity of cancer drugs to immune cells and other healthy cells, an anti‐BRAF V600E mutant melanoma specific drug (PLX4032) is loaded into BPLP‐PLA nanoparticles. Muramyl tripeptide is also conjugated onto the nanoparticles to improve the nanoparticle loading efficiency. The resulting nanoparticles are internalized within macrophages, which are tracked via the intrinsic fluorescence of BPLP‐PLA. Macrophages carrying nanoparticles deliver drugs to melanoma cells via cell–cell binding. Pharmacological studies also indicate that the PLX4032 loaded nanoparticles effectively kill melanoma cells. The “self‐powered” immune cell‐mediated drug delivery system demonstrates a potentially significant advancement in targeted theranostic cancer nanotechnologies.  相似文献   

9.
An intelligent theranostic nanoplatform based on nanovalve operated metal–organic framework (MOF) core–shell hybrids, incorporating tumorous microenvironment‐triggered drug release, magnetic resonance imaging (MRI) guidance, sustained release, and effective chemotherapy in one pot is reported. The core–shell hybrids are constructed by an in situ growth method, in which Fe3O4 particles with superior abilities of MRI and magnetic separation form the core and UiO‐66 MOF with high loading capacity compose the shell, and then are surface‐installed with pillararene‐based pseudorotaxanes as tightness‐adjustable nanovalves. This strategy endows the system with the ability of targeted, multistimuli responsive drug release in response to pH changes, temperature variations, and competitive agents. Water‐soluble carboxylatopillar[6]arene system achieved sustained drug release over 7 days due to stronger host–guest binding, suggesting that the nanovalve tightness further reinforces the desirable release of anticancer agent over a prolonged time at the lesion site.  相似文献   

10.
Nanotechnology has often been applied in the development of targeted drug‐delivery systems for the treatment of cancer. An ideal nanoscale system for drug delivery should be able to selectively deliver and rapidly release the carried therapeutic drug(s) in cancer cells and, more importantly, not react to off‐target cells so as to eliminate unwanted toxicity on normal tissues. To reach this goal, a selective chemotherapeutic is formulated using a hollow gold nanosphere (HAuNS) equipped with a biomarker‐specific aptamer (Apt), and loaded with the chemotherapy drug doxorubicin (DOX). The formed Apt‐HAuNS‐Dox, approximately 42 nm in diameter, specifically binds to lymphoma tumor cells and does not react to control cells that do not express the biomarker. Through aptamer‐mediated selective cell binding, the Apt‐HAuNS‐Dox is internalized exclusively into the targeted tumor cells, and then released the DOX intracellularly. Of note, although the formed Apt‐HAuNS‐Dox is stable under normal biological conditions (pH 7.4), it appears ultrasensitive to pH change and rapidly releases 80% of the loaded DOX within 2 h at pH 5.0, a condition seen in cell lysosomes. Functional assays using cell mixtures show that the Apt‐HAuNS‐Dox selectively kills lymphoma tumor cells, but has no effect on the growth of the off‐target cells in the same cultures, indicating that this ultra pH‐sensitive Apt‐HAuNS‐Dox can selectively treat cancer through specific aptamer guidance, and will have minimal side effects on normal tissue.  相似文献   

11.
Targeted delivery of intracellularly active diagnostics and therapeutics in vivo is a major challenge in cancer nanomedicine. A nanocarrier should possess long circulation time yet be small and stable enough to freely navigate through interstitial space to deliver its cargo to targeted cells. Herein, it is shown that by adding targeting ligands to nanoparticles that mimic high‐density lipoprotein (HDL), tumor‐targeted sub‐30‐nm peptide–lipid nanocarriers are created with controllable size, cargo loading, and shielding properties. The size of the nanocarrier is tunable between 10 and 30 nm, which correlates with a payload of 15–100 molecules of fluorescent dye. Ligand‐directed nanocarriers targeting epidermal growth factor receptor (EGFR) are confirmed both in vitro and in vivo. The nanocarriers show favorable circulation time, tumor accumulation, and biodistribution with or without the targeting ligand. The EGFR targeting ligand is proved to be essential for the EGFR‐mediated tumor cell uptake of the nanocarriers, a prerequisite of intracellular delivery. The results demonstrate that targeted HDL‐mimetic nanocarriers are useful delivery vehicles that could open new avenues for the development of clinically viable targeted nanomedicine.  相似文献   

12.
A nanocarrier system of d ‐a‐tocopheryl polyethylene glycol 1000 succinate (TPGS)‐functionalized polydopamine‐coated mesoporous silica nanoparticles (NPs) is developed for sustainable and pH‐responsive delivery of doxorubicin (DOX) as a model drug for the treatment of drug‐resistant nonsmall cell lung cancer. Such nanoparticles are of desired particle size, drug loading, and drug release profile. The surface morphology, surface charge, and surface chemical properties are also successfully characterized by a series of techniques such as transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), Brunauer‐Emmett‐Teller (BET) method, thermal gravimetric analysis (TGA), dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FTIR). The normal A549 cells and drug‐resistant A549 cells are employed to access the cytotoxicity and cellular uptake of the NPs. The therapeutic effects of TPGS‐conjugated nanoparticles are evaluated in vitro and in vivo. Compared with free DOX and DOX‐loaded NPs without TPGS ligand modification, MSNs‐DOX@PDA‐TPGS exhibits outstanding capacity to overcome multidrug resistance and shows better in vivo therapeutic efficacy. This splendid drug delivery platform can also be sued to deliver other hydrophilic and hydrophobic drugs.  相似文献   

13.
This study introduces multifunctional lipid nanoparticles (LNPs), mimicking the structure and compositions of low‐density lipoproteins, for the tumor‐targeted co‐delivery of anti‐cancer drugs and superparamagnetic nanocrystals. Paclitaxel (4.7 wt%) and iron oxide nanocrystals (6.8 wt%, 11 nm in diameter) are co‐encapsulated within folate‐functionalized LNPs, which contain a cluster of nanocrystals with an overall diameter of about 170 nm and a zeta potential of about ‐40 mV. The folate‐functionalized LNPs enable the targeted detection of MCF‐7, human breast adenocarcinoma expressing folate receptors, in T2‐weighted magnetic resonance images as well as the efficient intracellular delivery of paclitaxel. Paclitaxel‐free LNPs show no significant cytotoxicity up to 0.2 mg mL?1, indicating the excellent biocompatibility of the LNPs for intracellular drug delivery applications. The targeted anti‐tumor activities of the LNPs in a mouse tumor model suggest that the low‐density lipoprotein‐mimetic LNPs can be an effective theranostic platform with excellent biocompatibility for the tumor‐targeted co‐delivery of various anti‐cancer agents.  相似文献   

14.
Loading and release mechanisms of Red clover necrotic mosaicvirus (RCNMV) derived plant viral nanoparticle (PVN) are shown for controlled delivery of the anticancer drug, doxorubicin (Dox). Previous studies demonstrate that RCNMV's structure and unique response to divalent cation depletion and re‐addition enables Dox infusion to the viral capsid through a pore formation mechanism. However, by controlling the net charge of RCNMV outer surface and accessibility of RCNMV interior cavity, tunable release of PVN is possible via manipulation of the Dox loading capacity and binding locations (external surface‐binding or internal capsid‐encapsulation) with the RCNMV capsid. Bimodal release kinetics is achieved via a rapid release of surface‐Dox followed by a slow release of encapsulated Dox. Moreover, the rate of Dox release and the amount of released Dox increases with an increase in environmental pH or a decrease in concentration of divalent cations. This pH‐responsive Dox release from PVN is controlled by Fickian diffusion kinetics where the release rate is dependent on the location of the bound or loaded active molecule. In summary, controllable release of Dox‐loaded PVNs is imparted by 1) formulation conditions and 2) driven by the capsid's pH‐ and ion‐ responsive functions in a given environment.  相似文献   

15.
Mitochondria, which are important mediators for cancer initiation, growth, metastasis, and drug resistance, have been considered as a major target in cancer therapy. Herein, an acid‐activated mitochondria‐targeted drug nanocarrier is constructed for precise delivery of nitric oxide (NO) as an adenosine triphosphate (ATP) suppressor to amplify the therapeutic efficacy in cancer treatments. By combining α‐cyclodextrin (α‐CD) and acid‐cleavable dimethylmaleic anhydride modified PEG conjugated mitochondria‐targeting peptide, the nanocarrier shows prolonged blood circulation time and enhanced cellular uptake together with selectively restoring mitochondria‐targeting capability under tumor extracellular pH (6.5). Such specific mitochondria‐targeted delivery of NO proves crucial in inducing mitochondria dysfunction through facilitating mitochondrial membrane permeabilization and downregulating ATP level, which can inhibit P‐glycoprotein‐related bioactivities and formation of tumor‐derived microvesicles to combat drug resistance and cancer metastasis. Therefore, this pioneering acid‐activated mitochondria‐targeted NO nanocarrier is supposed to be a malignant tumor opponent and may provide insights for diverse NO‐relevant cancer treatments.  相似文献   

16.
We report a novel quantum dot (QD)-aptamer(Apt)-doxorubicin (Dox) conjugate [QD-Apt(Dox)] as a targeted cancer imaging, therapy, and sensing system. By functionalizing the surface of fluorescent QD with the A10 RNA aptamer, which recognizes the extracellular domain of the prostate specific membrane antigen (PSMA), we developed a targeted QD imaging system (QD-Apt) that is capable of differential uptake and imaging of prostate cancer cells that express the PSMA protein. The intercalation of Dox, a widely used antineoplastic anthracycline drug with fluorescent properties, in the double-stranded stem of the A10 aptamer results in a targeted QD-Apt(Dox) conjugate with reversible self-quenching properties based on a Bi-FRET mechanism. A donor-acceptor model fluorescence resonance energy transfer (FRET) between QD and Dox and a donor-quencher model FRET between Dox and aptamer result when Dox intercalated within the A10 aptamer. This simple multifunctional nanoparticle system can deliver Dox to the targeted prostate cancer cells and sense the delivery of Dox by activating the fluorescence of QD, which concurrently images the cancer cells. We demonstrate the specificity and sensitivity of this nanoparticle conjugate as a cancer imaging, therapy and sensing system in vitro.  相似文献   

17.
Short circulation time and off‐target toxicity are the main challenges faced by small‐molecule chemotherapeutics. To overcome these shortcomings, an albumin‐binding peptide conjugate of chemotherapeutics is developed that binds specifically to endogenous albumin and harnesses its favorable pharmacokinetics and pharmacodynamics for drug delivery to tumors. A protein‐G‐derived albumin‐binding domain (ABD) is conjugated with doxorubicin (Dox) via a pH‐sensitive linker. One to two Dox molecules are conjugated to ABD without loss of aqueous solubility. The albumin‐binding ABD–Dox conjugate exhibits nanomolar affinity for human and mouse albumin, and upon administration in mice, shows a plasma half‐life of 29.4 h, which is close to that of mouse albumin. Additionally, 2 h after administration, ABD–Dox exhibits an approximately 4‐fold higher concentration in the tumor than free Dox. Free Dox clears quickly from the tumor, while ABD–Dox maintains a steady concentration in the tumor for at least 72 h, so that its relative accumulation at 72 h is ≈120‐fold greater than that of free Dox. The improved pharmacokinetics and biodistribution of ABD–Dox result in enhanced therapeutic efficacy in syngeneic C26 colon carcinoma and MIA PaCa‐2 pancreatic tumor xenografts, compared with free Dox and aldoxorubicin, an albumin‐reactive Dox prodrug currently in clinical development.  相似文献   

18.
Bacterial infection is one of the most serious physiological conditions threatening human health. There is an increasing demand for more effective bacterial diagnosis and treatment through noninvasive theranostic approaches. Herein, a new strategy is reported to achieve in vivo metabolic labeling of bacteria through the use of MIL‐100 (Fe) nanoparticles (NPs) as the nanocarrier for precise delivery of 3‐azido‐d ‐alanine (d ‐AzAla). After intravenous injection, MIL‐100 (Fe) NPs can accumulate preferentially and degrade rapidly within the high H2O2 inflammatory environment, releasing d ‐AzAla in the process. d ‐AzAla is selectively integrated into the cell walls of bacteria, which is confirmed by fluorescence signals from clickable DBCO‐Cy5. Ultrasmall photosensitizer NPs with aggregation‐induced emission characteristics are subsequently designed to react with the modified bacteria through in vivo click chemistry. Through photodynamic therapy, the amount of bacteria on the infected tissue can be significantly reduced. Overall, this study demonstrates the advantages of metal–organic‐framework‐assisted bacteria metabolic labeling strategy for precise bacterial detection and therapy guided by fluorescence imaging.  相似文献   

19.
The design and synthesis of a novel reduction‐sensitive, robust, and biocompatible vesicle (SSCB[6]VC) are reported, which is self‐assembled from an amphiphilic cucurbit[6]uril (CB[6]) derivative that contains disulfide bonds between hexaethylene glycol units and a CB[6] core. The remarkable features of SSCB[6]VC include: 1) facile, non‐destructive, non‐covalent, and modular surface modification using exceptionally strong host–guest chemistry; 2) high structural stability; 3) facile internalization into targeted cells by receptor‐mediated endocytosis, and 4) efficient triggered release of entrapped drugs in a reducing environment such as cytoplasm. Furthermore, a significantly increased cytotoxicity of the anticancer drug doxorubicin to cancer cells is demonstrated using doxorubicin‐loaded SSCB[6]VC, the surface of which is decorated with functional moieties such as a folate–spermidine conjugate and fluorescein isothiocyanate–spermidine conjugate as targeting ligand and fluorescence imaging probe, respectively. SSCB[6]VC with such unique features can be used as a highly versatile multifunctional platform for targeted drug delivery, which may find useful applications in cancer therapy. This novel strategy based on supramolecular chemistry and the unique properties of CB[6] can be extended to design smart multifunctional materials for biomedical applications including gene delivery.  相似文献   

20.
Codelivery of diagnostic probes and therapeutic molecules often suffers from intrinsic complexity and premature leakage from or degradation of the nanocarrier. Inspired by the “Y” shape of indocyanine green (ICG), the dye is integrated in an amphiphilic lipopeptide (RNF). The hydrophilic segment is composed of arginine‐rich dendritic peptides, while cyanine dyes are modified with two long carbon chains and employed as the hydrophobic moiety. They are linked through a disulfide linkage to improve the responsivity in the tumor microenvironment. After formulation with other lipopeptides at an optimized ratio, the theranostic system (RNS‐2) forms lipid‐based nanoparticles with slight positive zeta potential enabling efficient condensation of DNA. The RNS‐2 displays glutathione responded gene release, activatable fluorescence recovery, and up to sevenfold higher in vitro transfection than Lipofectamine 2000. Compared with a Cy3 and Cy5 labeled fluorescence resonance energy transfer indicator for gene release, the “turn‐on” indocyanine green analogs exhibit longer emission wavelength and better positive correlation with the dynamic processes of gene delivery. More importantly, the RNS‐2 system enables efficient near infrared imaging guided gene transfer in tumor‐bearing mice and thus provides more precise and accurate information on location of the cargo gene and synthesized carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号