首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
MnO as anode materials has received particular interest owing to its high specific capacity, abundant resources, and low cost. However, serious problems related to the large volume change (>170%) during the lithiation/delithiation processes still results in poor rate capability and fast capacity decay. With homogenous crystals of MnO grown in the network of carbon nanofibers (CNF), binding effect of CNF can effectively weaken the volume change of MnO during cycles. In this work, a CNF/MnO flexible electrode for lithium‐ion batteries is designed and synthesized. The CNF play the roles of conductive channel and elastically astricting MnO particles during lithiation/delithiation. CNF/MnO as binder‐free anode delivers specific capacity of 983.8 mAh g?1 after 100th cycle at a current density of 0.2 A g?1, and 600 mAh g?1 at 1 A g?1 which are much better than those of pure MnO and pure CNF. The ex‐situ morphologies clearly show the relative volume change of MnO/CNF as anode under various discharging and charging times. CNF can elastically buffer the volume change of MnO during charging/discharging cycles. A facile and scalable approach for synthesizing a novel flexible binder‐free anode of CNF/MnO for potential application in highly reversible lithium storage devices is presented.  相似文献   

6.
SnO2 has been considered as a promising anode material for lithium‐ion batteries (LIBs) and sodium ion batteries (SIBs), but challenging as well for the low‐reversible conversion reaction and coulombic efficiency. To address these issues, herein, SnO2 quantum dots (≈5 nm) embedded in porous N‐doped carbon matrix (SnO2/NC) are developed via a hydrothermal step combined with a self‐polymerization process at room temperature. The ultrasmall size in quantum dots can greatly shorten the ion diffusion distance and lower the internal strain, improving the conversion reaction efficiency and coulombic efficiency. The rich mesopores/micropores and highly conductive N‐doped carbon matrix can further enhance the overall conductivity and buffer effect of the composite. As a result, the optimized SnO2/NC‐2 composite for LIBs exhibits a high coulombic efficiency of 72.9%, a high discharge capacity of 1255.2 mAh g?1 at 0.1 A g?1 after 100 cycles and a long life‐span with a capacity of 753 mAh g?1 after 1500 cycles at 1 A g?1. The SnO2/NC‐2 composite also displays excellent performance for SIBs, delivering a superior discharge capacity of 212.6 mAh g?1 at 1 A g?1 after 3000 cycles. These excellent results can be of visible significance for the size effect of the uniform quantum dots.  相似文献   

7.
A novel uniform amorphous carbon‐coated SnO2 nanocrystal (NCs) for use in lithium‐ion batteries is formed by utilizing bovine serum albumin (BSA) as both the ligand and carbon source. The SnO2–carbon composite is then coated by a controlled thickness of polydopamine (PD) layer through in situ polymerization of dopamine. The PD‐coated SnO2–carbon composite is finally mixed with polyacrylic acid (PAA) which is used as binder to accomplish a whole anode system. A crosslink reaction is built between PAA and PD through formation of amide bonds to produce a robust network in the anode system. As a result, the designed electrode exhibits improved reversible capacity of 648 mAh/g at a current density of 100 mA/g after 100 cycles, and an enhanced rate performance of 875, 745, 639, and 523 mAh/g at current densities of 50, 100, 250, and 500 mA/g, respectively. FTIR spectra confirm the formation of crosslink reaction and the stability of the robust network during long‐term cycling. The great improvement of capacity and rate performance achieved in this anode system is attributed to two stable interfaces built between the active material (SnO2–carbon composite) and the buffer layer (PD) and between the buffer layer and the binder (PAA), which effectively diminish the volume change of SnO2 during charge/discharge process and provide a stable matrix for active materials.  相似文献   

8.
9.
Major challenges in developing 2D transition‐metal disulfides (TMDs) as anode materials for lithium/sodium ion batteries (LIBs/SIBs) lie in rational design and targeted synthesis of TMD‐based nanocomposite structures with precisely controlled ion and electron transport. Herein, a general and scalable solvent‐exchange strategy is presented for uniform dispersion of few‐layer MoS2 (f‐MoS2) from high‐boiling‐point solvents (N‐methyl‐2‐pyrrolidone (NMP), N,N‐dimethyl formaldehyde (DMF), etc.) into low‐boiling‐point solvents (water, ethanol, etc.). The solvent‐exchange strategy dramatically simplifies high‐yield production of dispersible MoS2 nanosheets as well as facilitates subsequent decoration of MoS2 for various applications. As a demonstration, MoS2‐decorated nitrogen‐rich carbon spheres (MoS2‐NCS) are prepared via in situ growth of polypyrrole and subsequent pyrolysis. Benefiting from its ultrathin feature, largely exposed active surface, highly conductive framework and excellent structural integrity, the 2D core–shell architecture of MoS2‐NCS exhibits an outstanding reversible capacity and excellent cycling performance, achieving high initial discharge capacity of 1087.5 and 508.6 mA h g?1 at 0.1 A g?1, capacity retentions of 95.6% and 94.2% after 500 and 250 charge/discharge cycles at 1 A g?1, for lithium/sodium ion storages, respectively.  相似文献   

10.
11.
12.
13.
Poor reversibility and high desorption temperature restricts the practical use of lithium borohydride (LiBH4) as an advanced hydrogen store. Herein, a LiBH4 composite confined in unique double‐layered carbon nanobowls prepared by a facile melt infiltration process is demonstrated, thanks to powerful capillary effect under 100 bar of H2 pressure. The gradual formation of double‐layered carbon nanobowls is witnessed by transmission electron microscopy (TEM) observation. Benefiting from the nanoconfinement effect and catalytic function of carbon, this composite releases hydrogen from 225 °C and peaks at 353 °C, with a hydrogen release amount up to 10.9 wt%. The peak temperature of dehydriding is lowered by 112 °C compared with bulk LiBH4. More importantly, the composite readily desorbs and absorbs ≈8.5 wt% of H2 at 300 °C and 100 bar H2, showing a significant reversibility of hydrogen storage. Such a high reversible capacity has not ever been observed under the identical conditions. The usable volumetric energy density reaches as high as 82.4 g L?1 with considerable dehydriding kinetics. The findings provide insights in the design and development of nanosized complex hydrides for on‐board applications.  相似文献   

14.
15.
A solvent‐free induced self‐assembly technology for the synthesis of nitrogen‐doped ordered mesoporous polymers (N‐OMPs) is developed, which is realized by mixing polymer precursors with block copolymer templates, curing at 140–180 °C, and calcination to remove the templates. This synthetic strategy represents a significant advancement in the preparation of functional porous polymers through a fast and scalable yet environmentally friendly route, since no solvents or catalysts are used. The synthesized N‐OMPs and their derived catalysts are found to exhibit competitive CO2 capacities (0.67–0.91 mmol g?1 at 25 °C and 0.15 bar), extraordinary CO2/N2 selectivities (98–205 at 25 °C), and excellent activities for catalyzing conversion of CO2 into cyclic carbonate (conversion >95% at 100 °C and 1.2 MPa for 1.5 h). The solvent‐free technology developed in this work can also be extended to the synthesis of N‐OMP/SiO2 nanocomposites, mesoporous SiO2, crystalline mesoporous TiO2, and TiPO, demonstrating its wide applicability in porous material synthesis.  相似文献   

16.
The development of new electrode materials for lithium‐ion batteries (LIBs) has always been a focal area of materials science, as the current technology may not be able to meet the high energy demands for electronic devices with better performance. Among all the metal oxides, tin dioxide (SnO2) is regarded as a promising candidate to serve as the anode material for LIBs due to its high theoretical capacity. Here, a thorough survey is provided of the synthesis of SnO2‐based nanomaterials with various structures and chemical compositions, and their application as negative electrodes for LIBs. It covers SnO2 with different morphologies ranging from 1D nanorods/nanowires/nanotubes, to 2D nanosheets, to 3D hollow nanostructures. Nanocomposites consisting of SnO2 and different carbonaceous supports, e.g., amorphous carbon, carbon nanotubes, graphene, are also investigated. The use of Sn‐based nanomaterials as the anode material for LIBs will be briefly discussed as well. The aim of this review is to provide an in‐depth and rational understanding such that the electrochemical properties of SnO2‐based anodes can be effectively enhanced by making proper nanostructures with optimized chemical composition. By focusing on SnO2, the hope is that such concepts and strategies can be extended to other potential metal oxides, such as titanium dioxide or iron oxides, thus shedding some light on the future development of high‐performance metal‐oxide based negative electrodes for LIBs.  相似文献   

17.
SnS2 has been widely studied as an anode material for sodium‐ion batteries (SIBs) based on the high theoretical capacity and layered structure. Unfortunately, rapid capacity decay associated with volume variation during cycling limits practical application. Herein, SnS2/Co3S4 hollow nanocubes anchored on S‐doped graphene are synthesized for the first time via coprecipitation and hydrothermal methods. When applied as the anode for SIBs, the sample delivers a distinguished charge specific capacity of 1141.8 mAh g?1 and there is no significant capacity decay (0.1 A g?1 for 50 cycles). When the rate is increased to 0.5 A g?1, it presents 845.7 mAh g?1 after cycling 100 times. Furthermore, the composite also exhibits an ultrafast sodium storage capability where 392.9 mAh g?1 can be obtained at 10 A g?1 and the charging time is less than 3 min. The outstanding electrochemical properties can be ascribed to the enhancement of conductivity for the addition of S‐doped graphene and the existence of p–n junctions in the SnS2/Co3S4 heterostructure. Moreover, the presence of mesopores between nanosheets can alleviate volume expansion during cycling as well as being beneficial for the migration of Na+.  相似文献   

18.
SnO2 suffers from fast capacity fading in lithium‐ion batteries due to large volume expansion as well as unstable solid electrolyte interphase. Herein, the design and synthesis of phosphorus bridging SnO2 and graphene through covalent bonding are demonstrated to achieve a robust structure. In this unique structure, the phosphorus is able to covalently “bridge” graphene and tin oxide nanocrystal through P? C and Sn? O? P bonding, respectively, and act as a buffer layer to keep the structure stable during charging–discharging. As a result, when applied as a lithium battery anode, SnO2@P@GO shows very stable performance and retains 95% of 2nd capacity onward after 700 cycles. Such unique structural design opens up new avenues for the rational design of other high‐capacity materials for lithium battery, and as a proof‐of‐concept, creates new opportunities in the synthesis of advanced functional materials for high‐performance energy storage devices.  相似文献   

19.
The development of cost‐effective and flexible electrodes is demanding in the field of energy storage. Herein, flexible FexOy/nitrogen‐doped carbon films (FexOy/NC‐MOG) are prepared by facile electrospinning of Fe‐based metal–organic gels (MOGs) followed by high‐temperature carbonization. This approach allows the even mixing of fragile coordination polymers with polyacrylonitrile into flexible films while reserving the structural characteristics of coordination polymers. After thermal treatment, FexOy/NC‐MOG films possess uniformly distributed FexOy nanoparticles and larger accessible surface areas than traditional FexOy‐NC films without MOG. Taking advantage of the unique structure, FexOy/NC‐MOG exhibits a superior rate performance (449.8 mA h g?1 at 5000 mA g–1) and long cycle life (629.3 mA h g–1 after 500 cycles at 1000 mA g–1) when used as additive‐free anodes in lithium‐ion batteries.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号