首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lateral heterostructures consisting of 2D transition metal dichalcogenides (TMDCs) directly interfaced with molecular networks or nanowires can be used to construct new hybrid materials with interesting electronic and spintronic properties. However, chemical methods for selective and controllable bond formation between 2D materials and organic molecular networks need to be developed. As a demonstration of a self‐assembled organic nanowire‐TMDC system, a method to link and interconnect epitaxial single‐layer MoS2 flakes with organic molecules is demonstrated. Whereas pristine epitaxial single‐layer MoS2 has no affinity for molecular attachment, it is found that single‐layer MoS2 will selectively bind the organic molecule 2,8‐dibromodibenzothiophene (DBDBT) in a surface‐assisted Ullmann coupling reaction when the MoS2 has been activated by pre‐exposing it to hydrogen. Atom‐resolved scanning tunneling microscopy (STM) imaging is used to analyze the bonding of the nanowires, and thereby it is revealed that selective bonding takes place on a specific S atom at the corner site between the two types of zig‐zag edges available in a hexagonal single layer MoS2 sheet. The method reported here successfully combining synthesis of epitaxial TMDCs and Ullmann coupling reactions on surfaces may open up new synthesis routes for 2D organic‐TMDC hybrid materials.  相似文献   

2.
Despite many encouraging properties of transition metal dichalcogenides (TMDs), a central challenge in the realm of industrial applications based on TMD materials is to connect the large‐scale synthesis and reproducible production of highly crystalline TMD materials. Here, the primary aim is to resolve simultaneously the two inversely related issues through the synthesis of MoS2(1?x )Se2x ternary alloys with customizable bichalcogen atomic (S and Se) ratio via atomic‐level substitution combined with a solution‐based large‐area compatible approach. The relative concentration of bichalcogen atoms in the 2D alloy can be effectively modulated by altering the selenization temperature, resulting in 4 in. scale production of MoS1.62Se0.38, MoS1.37Se0.63, MoS1.15Se0.85, and MoS0.46Se1.54 alloys, as well as MoS2 and MoSe2. Comprehensive spectroscopic evaluations for vertical and lateral homogeneity in terms of heteroatom distribution in the large‐scale 2D TMD alloys are implemented. Se‐stimulated strain effects and a detailed mechanism for the Se substitution in the MoS2 crystal are further explored. Finally, the capability of the 2D alloy for industrial application in nanophotonic devices and hydrogen evolution reaction (HER) catalysts is validated. Substantial enhancements in the optoelectronic and HER performances of the 2D ternary alloy compared with those of its binary counterparts, including pure‐phase MoS2 and MoSe2, are unambiguously achieved.  相似文献   

3.
This paper describes a non-aqueous, solvent-free, environmentally friendly, one-pot facile reaction to synthesize inorganic materials inclusion with carbon (MoS2 or MoSe2/C) at low temperatures. Nanoflakes of MoS2 and MoSe2 inclusion with carbon are prepared by a thermal (750 °C) reaction between Mo(CO)6 and S or Se at their autogenic pressure in a closed reactor under inert atmosphere. Elemental sulfur or selenium powders are chosen in order to avoid the use of highly toxic H2S and H2Se gases. Without further processing of the as-prepared MoS2/C or MoSe2/C products, their compositional, morphological and structural characterization are carried out. The possibility of hydrogen storage in as-synthesized MoS2/C or MoSe2/C products is examined. A probable reaction mechanism for the formation of MoS2 or MoSe2 nanoflakes inclusion with C is discussed.  相似文献   

4.
Tailoring molybdenum selenide electrocatalysts with tunable phase and morphology is of great importance for advancement of hydrogen evolution reaction (HER). In this work, phase‐ and morphology‐modulated N‐doped MoSe2/TiC‐C shell/core arrays through a facile hydrothermal and postannealing treatment strategy are reported. Highly conductive TiC‐C nanorod arrays serve as the backbone for MoSe2 nanosheets to form high‐quality MoSe2/TiC‐C shell/core arrays. Impressively, continuous phase modulation of MoSe2 is realized on the MoSe2/TiC‐C arrays. Except for the pure 1T‐MoSe2 and 2H‐MoSe2, mixed (1T‐2H)‐MoSe2 nanosheets are achieved in the N‐MoSe2 by N doping and demonstrated by spherical aberration electron microscope. Plausible mechanism of phase transformation and different doping sites of N atom are proposed via theoretical calculation. The much smaller energy barrier, longer H? Se bond length, and diminished bandgap endow N‐MoSe2/TiC‐C arrays with substantially superior HER performance compared to 1T and 2H phase counterparts. Impressively, the designed N‐MoSe2/TiC‐C arrays exhibit a low overpotential of 137 mV at a large current density of 100 mA cm?2, and a small Tafel slope of 32 mV dec?1. Our results pave the way to unravel the enhancement mechanism of HER on 2D transition metal dichalcogenides by N doping.  相似文献   

5.
Manipulating the anisotropy in 2D nanosheets is a promising way to tune or trigger functional properties at the nanoscale. Here, a novel approach is presented to introduce a one‐directional anisotropy in MoS2 nanosheets via chemical vapor deposition (CVD) onto rippled patterns prepared on ion‐sputtered SiO2/Si substrates. The optoelectronic properties of MoS2 are dramatically affected by the rippled MoS2 morphology both at the macro‐ and the nanoscale. In particular, strongly anisotropic phonon modes are observed depending on the polarization orientation with respect to the ripple axis. Moreover, the rippled morphology induces localization of strain and charge doping at the nanoscale, thus causing substantial redshifts of the phonon mode frequencies and a topography‐dependent modulation of the MoS2 workfunction, respectively. This study paves the way to a controllable tuning of the anisotropy via substrate pattern engineering in CVD‐grown 2D nanosheets.  相似文献   

6.
Performance breakthrough of MoSe2‐based hydrogen evolution reaction (HER) electrocatalysts largely relies on sophisticated phase modulation and judicious innovation on conductive matrix/support. In this work the controllable synthesis of phosphate ion (PO43?) intercalation induced‐MoSe2 (P‐MoSe2) nanosheets on N‐doped mold spore carbon (N‐MSC) forming P‐MoSe2/N‐MSC composite electrocatalysts is realized. Impressively, a novel conductive N‐MSC matrix is constructed by a facile mold fermentation method. Furthermore, the phase of MoSe2 can be modulated by a simple phosphorization strategy to realize the conversion from 2H‐MoSe2 to 1T‐MoSe2 to produce biphase‐coexisted (1T‐2H)‐MoSe2 by PO43‐ intercalation (namely, P‐MoSe2), confirmed by synchrotron radiation technology and spherical aberration‐corrected TEM (SACTEM). Notably, higher conductivity, lower bandgap and adsorption energy of H+ are verified for the P‐MoSe2/N‐MSC with the help of density functional theory (DFT) calculation. Benefiting from these unique advantages, the P‐MoSe2/N‐MSC composites show superior HER performance with a low Tafel slope (≈51 mV dec‐1) and overpotential (≈126 mV at 10 mA cm‐1) and excellent electrochemical stability, better than 2H‐MoSe2/N‐MSC and MoSe2/carbon nanosphere (MoSe2/CNS) counterparts. This work demonstrates a new kind of carbon material via biological cultivation, and simultaneously unravels the phase transformation mechanism of MoSe2 by PO43‐ intercalation.  相似文献   

7.
2D transition metal dichalcogenides (TMDCs) have emerged as promising candidates for post‐silicon nanoelectronics owing to their unique and outstanding semiconducting properties. However, contact engineering for these materials to create high‐performance devices while adapting for large‐area fabrication is still in its nascent stages. In this study, graphene/Ag contacts are introduced into MoS2 devices, for which a graphene film synthesized by chemical vapor deposition (CVD) is inserted between a CVD‐grown MoS2 film and a Ag electrode as an interfacial layer. The MoS2 field‐effect transistors with graphene/Ag contacts show improved electrical and photoelectrical properties, achieving a field‐effect mobility of 35 cm2 V?1 s?1, an on/off current ratio of 4 × 108, and a photoresponsivity of 2160 A W?1, compared to those of devices with conventional Ti/Au contacts. These improvements are attributed to the low work function of Ag and the tunability of graphene Fermi level; the n‐doping of Ag in graphene decreases its Fermi level, thereby reducing the Schottky barrier height and contact resistance between the MoS2 and electrodes. This demonstration of contact interface engineering with CVD‐grown MoS2 and graphene is a key step toward the practical application of atomically thin TMDC‐based devices with low‐resistance contacts for high‐performance large‐area electronics and optoelectronics.  相似文献   

8.
Molybdenum diselenide (MoSe2) is widely considered as one of the most promising catalysts for the hydrogen evolution reaction (HER). However, the absence of active sites and poor conductivity of MoSe2 severely restrict its HER performance. By introducing a layer of MoO2 on Mo foil, MoSe2/MoO2 hybrid nanosheets with an abundant edge and high electrical conductivity can be synthesized on the surface of Mo foil. Metallic MoO2 can improve the charge transport efficiency of MoSe2/MoO2, thereby enhancing the overall HER performance. MoSe2/MoO2 exhibits fast hydrogen evolution kinetics with a small overpotential of 142 mV versus RHE at a current density of 10 mA cm?2 and Tafel slope of 48.9 mV dec?1.  相似文献   

9.
The low utilization of active sites and sluggish reaction kinetics of MoSe2 severely impede its commercial application as electrocatalyst for hydrogen evolution reaction (HER). To address these two issues, the first example of introducing 1T MoSe2 and N dopant into vertical 2H MoSe2/graphene shell/core nanoflake arrays that remarkably boost their HER activity is herein described. By means of the improved conductivity, rich catalytic active sites and highly accessible surface area as a result of the introduction of 1T MoSe2 and N doping as well as the unique structural features, the N‐doped 1T‐2H MoSe2/graphene (N‐MoSe2/VG) shell/core nanoflake arrays show substantially enhanced HER activity. Remarkably, the N‐MoSe2/VG nanoflakes exhibit a relatively low onset potential of 45 mV and overpotential of 98 mV (vs RHE) at 10 mA cm?2 with excellent long‐term stability (no decay after 20 000 cycles), outperforming most of the recently reported Mo‐based electrocatalysts. The success of improving the electrochemical performance via the introduction of 1T phase and N dopant offers new opportunities in the development of high‐performance MoSe2‐based electrodes for other energy‐related applications.  相似文献   

10.
Thin‐film transistors (TFTs) based on multilayer molybdenum diselenide (MoSe2) synthesized by modified atmospheric pressure chemical vapor deposition (APCVD) exhibit outstanding photoresponsivity (103.1 A W?1), while it is generally believed that optical response of multilayer transition metal dichalcogenides (TMDs) is significantly limited due to their indirect bandgap and inefficient photoexcitation process. Here, the fundamental origin of such a high photoresponsivity in the synthesized multilayer MoSe2 TFTs is sought. A unique structural characteristic of the APCVD‐grown MoSe2 is observed, in which interstitial Mo atoms exist between basal planes, unlike usual 2H phase TMDs. Density functional theory calculations and photoinduced transfer characteristics reveal that such interstitial Mo atoms form photoreactive electronic states in the bandgap. Models indicate that huge photoamplification is attributed to trapped holes in subgap states, resulting in a significant photovoltaic effect. In this study, the fundamental origin of high responsivity with synthetic MoSe2 phototransistors is identified, suggesting a novel route to high‐performance, multifunctional 2D material devices for future wearable sensor applications.  相似文献   

11.
In this work, a sulfur (S) vacancy passivated monolayer MoS2 piezoelectric nanogenerator (PNG) is demonstrated, and its properties before and after S treatment are compared to investigate the effect of passivating S vacancy. The S vacancies are effectively passivated by using the S treatment process on the pristine MoS2 surface. The S vacancy site has a tendency to covalently bond with S functional groups; therefore, by capturing free electrons, a S atom will form a chemisorbed bond with the S vacancy site of MoS2. S treatment reduces the charge‐carrier density of the monolayer MoS2 surface, thus the screening effect of piezoelectric polarization charges by free carrier is significantly prevented. As a result, the output peak current and voltage of the S‐treated monolayer MoS2 nanosheet PNG are increased by more than 3 times (100 pA) and 2 times (22 mV), respectively. Further, the S treatment increases the maximum power by almost 10 times. The results suggest that S treatment can reduce free‐charge carrier by sulfur S passivation and efficiently prevent the screening effect. Thus, the piezoelectric output peaks of current, voltage, and maximum power are dramatically increased, as compared with the pristine MoS2.  相似文献   

12.
Other than the well‐known sulfurization of molybdate compound to synthesize molybdenum disulfide (MoS2) layers, the dynamic process in the whole crystalline growth from nuclei to triangular domains has been rarely experimentally explored. Here, a competing sulfur‐capture principle jointly with strict epitaxial mechanism is first proposed for the initial topography evolution and the final intrinsic highly oriented growth of triangular MoS2 domains with Mo or S terminations on the graphene (Gr) template. Additionally, potential distributions on MoS2 domains and bare Gr are presented to be different due to the charge transfer within heterostructures. The findings offer the mechanism of templated growth of 2D transition metal dichalcogenides, and provide general principles in syntheses of vertical 2D heterostructures that can be applied to electronics.  相似文献   

13.
The existence of defects in 2D semiconductors has been predicted to generate unique physical properties and markedly influence their electronic and optoelectronic properties. In this work, it is found that the monolayer MoS2 prepared by chemical vapor deposition is nearly defect‐free after annealing under ultrahigh vacuum conditions at ≈400 K, as evidenced by scanning tunneling microscopy observations. However, after thermal annealing process at ≈900 K, the existence of dominant single sulfur vacancies and relatively rare vacancy chains (2S, 3S, and 4S) is convinced in monolayer MoS2 as‐grown on Au foils. Of particular significance is the revelation that the versatile vacancies can modulate the band structure of the monolayer MoS2, leading to a decrease of the bandgap and an obvious n‐doping effect. These results are confirmed by scanning tunneling spectroscopy data as well as first‐principles theoretical simulations of the related morphologies and the electronic properties of the various defect types. Briefly, this work should pave a novel route for defect engineering and hence the electronic property modulation of three‐atom‐thin 2D layered semiconductors.  相似文献   

14.
Molybdenum (Mo) films with a thickness of about 800 nm were room temperature sputtered onto flexible polymeric substrates. Upilex® films were chosen as substrates on the basis of their high thermal endurance and reduced coefficient of thermal expansion. Thermal stability of Mo films has been proved by heat treatment of the Mo/Upilex® structures at a temperature comparable to that used in the preparation of the Cu(In,Ga)(Se,S)2 absorber layer. A combination of high optical reflectance (maximum values of 75-80%), low electrical resistivity (about 30 μΩ cm) and a smooth surface free of cracks for heated films highlights their good thermal stability. The formation of MoSe2 and MoS2 layers, after selenization/sulfurization of the Mo/Upilex® structures, has been further investigated in view of their application as back contact layers in flexible CIGS based solar cells.  相似文献   

15.
Enhanced second-harmonic generation (SHG) responses are reported in monolayer transition metal dichalcogenides (e.g., MX2, M: Mo, W; X: S, Se) due to the broken symmetries. The 3R-like stacked MX2 spiral structures possessing the similar broken inversion symmetry should present dramatically enhanced SHG responses, thus providing great flexibility in designing miniaturized on-chip nonlinear optical devices. To achieve this, the first direct synthesis of twisted 3R-stacked chiral molybdenum diselenide (MoSe2) spiral structures with specific screw dislocations (SD) arms is reported, via designing a water-assisted chemical vapor transport (CVT) approach. The study also clarifies the formation mechanism of the MoSe2 spiral structures, by precisely regulating the precursor supply accompanying with multiscale characterizations. Significantly, an up to three orders of magnitude enhancement of the SHG responses in twisted 3R stacked MoSe2 spirals is demonstrated, which is proposed to arise from the synergistic effects of broken inversion symmetry, strong light–matter interaction, and band nesting effects. Briefly, the work provides an efficient synthetic route for achieving the 3R-stacked TMDCs spirals, which can serve as perfect platforms for promoting their applications in on-chip nonlinear optical devices.  相似文献   

16.
MoS2 becomes an efficient and durable nonprecious‐metal electrocatalyst for the hydrogen evolution reaction (HER) when it contains multifunctional active sites for water splitting derived from 1T‐phase, defects, S vacancies, exposed Mo edges with expanded interlayer spacings. In contrast to previously reported MoS2‐based catalysts targeting only a single or few of these characteristics, the all‐in‐one MoS2 catalyst prepared herein features all of the above active site types. During synthesis, the intercalation of in situ generated NH3 molecules into MoS2 sheets affords ammoniated MoS2 (A‐MoS2) that predominantly comprises 1T‐MoS2 and exhibits an expanded interlayer spacing. The subsequent reduction of A‐MoS2 results in the removal of intercalated NH3 and H2S to form an all‐in‐one MoS2 with multifunctional active sites mentioned above (R‐MoS2) that exhibits electrocatalytic HER performance in alkaline media superior to those of all previously reported MoS2‐based electrocatalysts. In particular, a hybrid MoS2/nickel foam catalyst outperforms commercial Pt/C in the practically meaningful high‐current region (>25 mA cm?2), demonstrating that R‐MoS2‐based materials can potentially replace Pt catalysts in practical alkaline HER systems.  相似文献   

17.
c2D transition metal dichalcogenides (TMDCs)‐based heterostructures have been demonstrated to achieve superior light absorption and photovoltaic effects theoretically and experimentally, making them extremely attractive for realizing optoelectronic devices. In this work, a vertical multilayered n‐MoS2/n‐silicon homotype heterojunction is fabricated, which takes advantage of multilayered MoS2 grown in situ directly on plane silicon. Electrical characterization reveals that the resultant device exhibits high sensitivity to visible–near‐infrared light with responsivity up to 11.9 A W–1. Notably, the photodetector shows high‐speed response time of ≈30.5 µs/71.6 µs and capability to work under higher pulsed light irradiation approaching 100 kHz. The high response speed could be attributed to a good quality of the multilayer MoS2, as well as in situ device fabrication process. These findings suggest that the multilayered MoS2/Si homotype heterojunction have great potential application in the field of visible–near‐infrared detection and might be used as elements for construction of high‐speed integrated optoelectronic sensor circuitry.  相似文献   

18.
A reliable and rapid manufacturing process of molybdenum disulfide (MoS2) with atomic‐scale thicknesses remains a fundamental challenge toward its successful incorporation into high‐performance nanoelectronics. It is imperative to achieve rapid and scalable production of MoS2 exhibiting high carrier mobility and excellent on/off current ratios simultaneously. Herein, inhibitor‐utilizing atomic layer deposition (iALD) is presented as a novel method to meet these requirements at the wafer scale. The kinetics of the chemisorption of Mo precursors in iALD is governed by the reaction energy and the steric hindrance of inhibitor molecules. By optimizing the inhibition of Mo precursor absorption, the nucleation on the substrate in the initial stage can be spontaneously tailored to produce iALD‐MoS2 thin films with a significantly increased grain size and surface coverage (>620%). Moreover, highly crystalline iALD‐MoS2 thin films, with thicknesses of only a few layers, excellent room temperature mobility (13.9 cm2 V?1 s?1), and on/off ratios (>108), employed as the channel material in field effect transistors on 6″ wafers, are successfully prepared.  相似文献   

19.
Scaling up the chemical vapor deposition (CVD) of monolayer transition metal dichalcogenides (TMDCs) is in high demand for practical applications. However, for CVD-grown TMDCs on a large scale, there are many existing factors that result in their poor uniformity. In particular, gas flow, which usually leads to inhomogeneous distributions of precursor concentrations, has yet to be well controlled. In this work, the growth of uniform monolayer MoS2 on a large scale by the delicate control of gas flows of precursors, which is realized by vertically aligning a well-designed perforated carbon nanotube (p-CNT) film face-to-face with the substrate in a horizontal tube furnace, is achieved. The p-CNT film releases gaseous Mo precursor from the solid part and allows S vapor to pass through the hollow part, resulting in uniform distributions of both gas flow rate and precursor concentrations near the substrate. Simulation results further verify that the well-designed p-CNT film guarantees a steady gas flow and a uniform spatial distribution of precursors. Consequently, the as-grown monolayer MoS2 shows quite good uniformity in geometry, density, structure, and electrical properties. This work provides a universal pathway for the synthesis of large-scale uniform monolayer TMDCs, and will advance their applications in high-performance electronic devices.  相似文献   

20.
MoSe2 is a promising earth‐abundant electrocatalyst for the hydrogen‐evolution reaction (HER), even though it has received much less attention among the layered dichalcogenide (MX2) materials than MoS2 so far. Here, a novel hydrothermal‐synthesis strategy is presented to achieve simultaneous and synergistic modulation of crystal phase and disorder in partially crystallized 1T‐MoSe2 nanosheets to dramatically enhance their HER catalytic activity. Careful structural characterization and defect characterization using positron annihilation lifetime spectroscopy correlated with electrochemical measurements show that the formation of the 1T phase under a large excess of the NaBH4 reductant during synthesis can effectively improve the intrinsic activity and conductivity, and the disordered structure from a lower reaction temperature can provide abundant unsaturated defects as active sites. Such synergistic effects lead to superior HER catalytic activity with an overpotential of 152 mV versus reversible hydrogen electrode (RHE) for the electrocatalytic current density of j = ?10 mA cm?2, and a Tafel slope of 52 mV dec?1. This work paves a new pathway for improving the catalytic activity of MoSe2 and generally MX2‐based electrocatalysts via a synergistic modulation strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号