首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Perovskite solar cells with all‐organic transport layers exhibit efficiencies rivaling their counterparts that employ inorganic transport layers, while avoiding high‐temperature processing. Herein, it is investigated how the choice of the fullerene derivative employed in the electron‐transporting layer of inverted perovskite cells affects the open‐circuit voltage (VOC). It is shown that nonradiative recombination mediated by the electron‐transporting layer is the limiting factor for the VOC in the cells. By inserting an ultrathin layer of an insulating polymer between the active CH3NH3PbI3 perovskite and the fullerene, an external radiative efficiency of up to 0.3%, a VOC as high as 1.16 V, and a power conversion efficiency of 19.4% are realized. The results show that the reduction of nonradiative recombination due to charge‐blocking at the perovskite/organic interface is more important than proper level alignment in the search for ideal selective contacts toward high VOC and efficiency.  相似文献   

2.
Efficient wide‐bandgap (WBG) perovskite solar cells are needed to boost the efficiency of silicon solar cells to beyond Schottky–Queisser limit, but they suffer from a larger open circuit voltage (VOC) deficit than narrower bandgap ones. Here, it is shown that one major limitation of VOC in WBG perovskite solar cells comes from the nonmatched energy levels of charge transport layers. Indene‐C60 bisadduct (ICBA) with higher‐lying lowest‐unoccupied‐molecular‐orbital is needed for WBG perovskite solar cells, while its energy‐disorder needs to be minimized before a larger VOC can be observed. A simple method is applied to reduce the energy disorder by isolating isomer ICBA‐tran3 from the as‐synthesized ICBA‐mixture. WBG perovskite solar cells with ICBA‐tran3 show enhanced VOC by 60 mV, reduced VOC deficit of 0.5 V, and then a record stabilized power conversion efficiency of 18.5%. This work points out the importance of matching the charge transport layers in perovskite solar cells when the perovskites have a different composition and energy levels.  相似文献   

3.
Wide-bandgap perovskite solar cells (PSCs) have attracted a lot of attention due to their application in tandem solar cells. However, the open-circuit voltage (VOC) of wide-bandgap PSCs is dramatically limited by high defect density existing at the interface and bulk of the perovskite film. Here, an anti-solvent optimized adduct to control perovskite crystallization strategy that reduces nonradiative recombination and minimizes VOC deficit is proposed. Specifically, an organic solvent with similar dipole moment, isopropanol (IPA) is added into ethyl acetate (EA) anti-solvent, which is beneficial to form PbI2 adducts with better crystalline orientation and direct formation of α-phase perovskite. As a result, EA-IPA (7-1) based 1.67 eV PSCs deliver a power conversion efficiency of 20.06% and a VOC of 1.255 V, which is one of the remarkable values for wide-bandgap around 1.67 eV. The findings provide an effective strategy for controlling crystallization to reduce defect density in PSCs.  相似文献   

4.
The energy disorder that arises from colloidal quantum dot (CQD) polydispersity limits the open‐circuit voltage (VOC) and efficiency of CQD photovoltaics. This energy broadening is significantly deteriorated today during CQD ligand exchange and film assembly. Here, a new solution‐phase ligand exchange that, via judicious incorporation of reactivity‐engineered additives, provides improved monodispersity in final CQD films is reported. It has been found that increasing the concentration of the less reactive species prevents CQD fusion and etching. As a result, CQD solar cells with a VOC of 0.7 V (vs 0.61 V for the control) for CQD films with exciton peak at 1.28 eV and a power conversion efficiency of 10.9% (vs 10.1% for the control) is achieved.  相似文献   

5.
Organic–inorganic lead halide perovskite solar cells (PVSCs), as a competing technology with traditional inorganic solar cells, have now realized a high power conversion efficiency (PCE) of 22.1%. In PVSCs, interfacial carrier recombination is one of the dominant energy‐loss mechanisms, which also results in the simultaneous loss of potential efficiency. In this work, for planar inverted PVSCs, the carrier recombination is dominated by the dopant concentration in the p‐doped hole transport layers (HTLs), since the F4‐TCNQ dopant induces more charge traps and electronic transmission channels, thus leading to a decrease in open‐circuit voltages (VOC). This issue is efficiently overcome by inserting a thin insulating polymer layer (poly(methyl methacrylate) or polystyrene) as a passivation layer with an appropriate thickness, which allows for increases in the VOC without significantly sacrificing the fill factor. It is believed that the passivation layer attributes to the passivation of interfacial recombination and the suppression of current leakage at the perovskite/HTL interface. By manipulating this interfacial passivation technique, a high PCE of 20.3% is achieved without hysteresis. Consequently, this versatile interfacial passivation methodology is highly useful for further improving the performance of planar inverted PVSCs.  相似文献   

6.
In this work, solar cells based on methylammonium lead iodide (MAPbI3) doped in solution with C70 fullerene in a mesoporous as well as planar electron‐transporting layer (ETL)‐free architecture are realized, showcasing in the latter case a record efficiency of 15.7% and an improved open‐circuit voltage (VOC). Contrary to the bulk heterojunction previously reported, the C70 molecules do not phase segregate and they are rather finely dispersed in the perovskite film, possibly infiltrating at the grain boundaries, while assisting the growth of a highly uniform perovskite layer. By means of time‐resolved femtosecond‐to‐nanosecond optical spectroscopy, with an extended spectral coverage, it is observed that electrons photogenerated in the perovskite are transferred to C70 with a time constant of 20 ps. Despite being captured by C70, electrons are not deeply trapped and can potentially bounce back into the perovskite, as suggested by the high fill factor and enhanced VOC of the MAPbI3:C70 solar cells, especially in the case of the ETL‐free device configuration.  相似文献   

7.
2D Ruddlesden–Popper perovskite (RPP) solar cells have excellent environmental stability. However, the power conversion efficiency (PCE) of RPP cells remains inferior to 3D perovskite‐based cells. Herein, 2D (CH3(CH2)3NH3)2(CH3NH3)n?1PbnI3n+1 perovskite cells with different numbers of [PbI6]4? sheets (n = 2–4) are analyzed. Photoluminescence quantum yield (PLQY) measurements show that nonradiative open‐circuit voltage (VOC) losses outweigh radiative losses in materials with n > 2. The n = 3 and n = 4 films exhibit a higher PLQY than the standard 3D methylammonium lead iodide perovskite although this is accompanied by increased interfacial recombination at the top perovskite/C60 interface. This tradeoff results in a similar PLQY in all devices, including the n = 2 system where the perovskite bulk dominates the recombination properties of the cell. In most cases the quasi‐Fermi level splitting matches the device VOC within 20 meV, which indicates minimal recombination losses at the metal contacts. The results show that poor charge transport rather than exciton dissociation is the primary reason for the reduction in fill factor of the RPP devices. Optimized n = 4 RPP solar cells had PCEs of 13% with significant potential for further improvements.  相似文献   

8.
Perovskite solar cells combine high carrier mobilities with long carrier lifetimes and high radiative efficiencies. Despite this, full devices suffer from significant nonradiative recombination losses, limiting their VOC to values well below the Shockley–Queisser limit. Here, recent advances in understanding nonradiative recombination in perovskite solar cells from picoseconds to steady state are presented, with an emphasis on the interfaces between the perovskite absorber and the charge transport layers. Quantification of the quasi‐Fermi level splitting in perovskite films with and without attached transport layers allows to identify the origin of nonradiative recombination, and to explain the VOC of operational devices. These measurements prove that in state‐of‐the‐art solar cells, nonradiative recombination at the interfaces between the perovskite and the transport layers is more important than processes in the bulk or at grain boundaries. Optical pump‐probe techniques give complementary access to the interfacial recombination pathways and provide quantitative information on transfer rates and recombination velocities. Promising optimization strategies are also highlighted, in particular in view of the role of energy level alignment and the importance of surface passivation. Recent record perovskite solar cells with low nonradiative losses are presented where interfacial recombination is effectively overcome—paving the way to the thermodynamic efficiency limit.  相似文献   

9.
Employing a layer of bulk‐heterojunction (BHJ) organic semiconductors on top of perovskite to further extend its photoresponse is considered as a simple and promising way to enhance the efficiency of perovskite‐based solar cells, instead of using tandem devices or near infrared (NIR)‐absorbing Sn‐containing perovskites. However, the progress made from this approach is quite limited because very few such hybrid solar cells can simultaneously show high short‐circuit current (JSC) and fill factor (FF). To find an appropriate NIR‐absorbing BHJ is essential for highly efficient, organic, photovoltaics (OPV)/perovskite hybrid solar cells. The materials involved in the BHJ layer not only need to have broad photoresponse to increase JSC, but also possess suitable energy levels and high mobility to afford high VOC and FF. In this work, a new porphyrin is synthesized and blended with [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) to function as an efficient BHJ for OPV/perovskite hybrid solar cells. The extended photoresponse, well‐matched energy levels, and high hole mobility from optimized BHJ morphology afford a very high power conversion efficiency (PCE) (19.02%) with high Voc, JSC, and FF achieved simultaneously. This is the highest value reported so far for such hybrid devices, which demonstrates the feasibility of further improving the efficiency of perovskite devices.  相似文献   

10.
Increasing the fill factor (FF) and the open-circuit voltage (VOC) simultaneously together with non-decreased short-circuit current density (JSC) are a challenge for highly efficient Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. Aimed at such target in CZTSSe solar cells, a synergistic strategy to tailor the recombination in the bulk and at the heterojunction interface has been developed, consisting of atomic-layer deposited aluminum oxide (ALD-Al2O3) and (NH4)2S treatment. With this strategy, deep-level CuZn defects are converted into shallower VCu defects and improved crystallinity, while the surface of the absorber is optimized by removing Zn- and Sn-related impurities and incorporating S. Consequently, the defects responsible for recombination in the bulk and at the heterojunction interface are effectively passivated, thereby prolonging the minority carrier lifetime and increasing the depletion region width, which promote carrier collection and reduce charge loss. As a consequence, the VOC deficit decreases from 0.607 to 0.547 V, and the average FF increases from 64.2% to 69.7%, especially, JSC does not decrease. Thus, the CZTSSe solar cell with the remarkable efficiency of 13.0% is fabricated. This study highlights the increased FF together with VOC simultaneously to promote the efficiency of CZTSSe solar cells, which could also be applied to other photoelectronic devices.  相似文献   

11.
Cesium‐based trihalide perovskites have been demonstrated as promising light absorbers for photovoltaic applications due to their superb composition stability. However, the large energy losses (Eloss) observed in inorganic perovskite solar cells has become a major hindrance impairing the ultimate efficiency. Here, an effective and reproducible method of modifying the interface between a CsPbI2Br absorber and polythiophene hole‐acceptor to minimize the Eloss is reported. It is demonstrated that polythiophene, deposited on the top of CsPbI2Br, can significantly reduce electron‐hole recombination within the perovskite, which is due to the electronic passivation of surface defect states. In addition, the interfacial properties are improved by a simple annealing process, leading to significantly reduced energy disorder in polythiophene and enhanced hole‐injection into the hole‐acceptor. Consequently, one of the highest power conversion efficiency (PCE) of 12.02% from a reverse scan in inorganic mixed‐halide perovskite solar cells is obtained. Modifying the perovskite films with annealing polythiophene enables an open‐circuit voltage (VOC) of up to 1.32 V and Eloss of down to 0.5 eV, which both are the optimal values reported among cesium‐lead mixed‐halide perovskite solar cells to date. This method provides a new route to further improve the efficiency of perovskite solar cells by minimizing the Eloss.  相似文献   

12.
Although inorganic perovskite solar cells (PSCs) are promising in thermal stability, their large open-circuit voltage (VOC) deficit and difficulty in large-area preparation still limit their development toward commercialization. The present work tailors C60 via a codoping strategy to construct an efficient electron-transporting layer (ETL), leading to a significant improvement in VOC of the inverted inorganic CsPbI2Br PSC. Specifically, tris(pentafluorophenyl)borane (TPFPB) is introduced as a dopant to lower the lowest unoccupied molecular orbital (LUMO) level of the C60 layer by forming a Lewis acidic adduct. The enlarged free energy difference provides a favorable enhancement in electron injection and thereby reduces charge recombination. Subsequently, a nonhygroscopic lithium salt (LiClO4) is added to increase electron mobility and conductivity of the film, leading to a reduction in the device hysteresis and facilitating the fabrication of a large-area device. Finally, the as-optimized inorganic CsPbI2Br PSCs gain a champion power conversion efficiency (PCE) of 15.19%, with a stabilized power output (SPO) of 14.21% (0.09 cm2). More importantly, this work also demonstrates a record PCE of 14.44% for large-area inorganic CsPbI2Br PSCs (1.0 cm2) and reports the first inorganic perovskite solar module with the excellent efficiency exceeding 12% (10.92 cm2) by a self-developed quasi-curved heating method.  相似文献   

13.
In order to utilize the near‐infrared (NIR) solar photons like silicon‐based solar cells, extensive research efforts have been devoted to the development of organic donor and acceptor materials with strong NIR absorption. However, single‐junction organic solar cells (OSCs) with photoresponse extending into >1000 nm and power conversion efficiency (PCE) >11% have rarely been reported. Herein, three fused‐ring electron acceptors with varying core size are reported. These three molecules exhibit strong absorption from 600 to 1000 nm and high electron mobility (>1 × 10?3 cm2 V?1 s?1). It is proposed that core engineering is a promising approach to elevate energy levels, enhance absorption and electron mobility, and finally achieve high device performance. This approach can maximize both short‐circuit current density ( JSC) and open‐circuit voltage (VOC) at the same time, differing from the commonly used end group engineering that is generally unable to realize simultaneous enhancement in both VOC and JSC. Finally, the single‐junction OSCs based on these acceptors in combination with the widely polymer donor PTB7‐Th yield JSC as high as 26.00 mA cm?2 and PCE as high as 12.3%.  相似文献   

14.
Plastic solar cells bear the potential for large‐scale power generation based on materials that provide the possibility of flexible, lightweight, inexpensive, efficient solar cells. Since the discovery of the photoinduced electron transfer from a conjugated polymer to fullerene molecules, followed by the introduction of the bulk heterojunction (BHJ) concept, this material combination has been extensively studied in organic solar cells, leading to several breakthroughs in efficiency, with a power conversion efficiency approaching 5 %. This article reviews the processes and limitations that govern device operation of polymer:fullerene BHJ solar cells, with respect to the charge‐carrier transport and photogeneration mechanism. The transport of electrons/holes in the blend is a crucial parameter and must be controlled (e.g., by controlling the nanoscale morphology) and enhanced in order to allow fabrication of thicker films to maximize the absorption, without significant recombination losses. Concomitantly, a balanced transport of electrons and holes in the blend is needed to suppress the build‐up of the space–charge that will significantly reduce the power conversion efficiency. Dissociation of electron–hole pairs at the donor/acceptor interface is an important process that limits the charge generation efficiency under normal operation condition. Based on these findings, there is a compromise between charge generation (light absorption) and open‐circuit voltage (VOC) when attempting to reduce the bandgap of the polymer (or fullerene). Therefore, an increase in VOC of polymer:fullerene cells, for example by raising the lowest unoccupied molecular orbital level of the fullerene, will benefit cell performance as both fill factor and short‐circuit current increase simultaneously.  相似文献   

15.
To take advantages of the intense absorption and fluorescence, high charge mobility, and high dielectric constant of CsPbI3 perovskite quantum dots (PQDs), PQD hybrid nonfullerene organic solar cells (OSCs) are fabricated. Addition of PQDs leads to simultaneous enhancement of open-circuit voltage (VOC), short-circuit current density (JSC), and fill factor (FF); power conversion efficiencies are boosted from 11.6% to 13.2% for PTB7-Th:FOIC blend and from 15.4% to 16.6% for PM6:Y6 blend. Incorporation of PQDs dramatically increases the energy of the charge transfer state, resulting in near-zero driving force and improved VOC. Interestingly, at near-zero driving force, the PQD hybrid OSCs show more efficient charge generation than the control device without PQDs, contributing to enhanced JSC, due to the formation of cascade band structure and increased molecular ordering. The strong fluorescence of the PQDs enhances the external quantum efficiency of the electroluminescence of the active layer, which can reduce nonradiative recombination voltage loss. The high dielectric constant of the PQDs screens the Coulombic interactions and reduces charge recombination, which is beneficial for increased FF. This work may open up wide applicability of perovskite quantum dots and an avenue toward high-performance nonfullerene solar cells.  相似文献   

16.
Recent perovskite solar cell (PSC) advances have pursued strategies for reducing interfacial energetic mismatches to mitigate energy losses, as well as to minimize interfacial and bulk defects and ion vacancies to maximize charge transfer. Here nonconjugated multi‐zwitterionic small‐molecule electrolytes (NSEs) are introduced, which act not only as charge‐extracting layers for barrier‐free charge collection at planar triple cation PSC cathodes but also passivate charged defects at the perovskite bulk/interface via a spontaneous bottom‐up passivation effect. Implementing these synergistic properties affords NSE‐based planar PSCs that deliver a remarkable power conversion efficiency of 21.18% with a maximum VOC = 1.19 V, in combination with suppressed hysteresis and enhanced environmental, thermal, and light‐soaking stability. Thus, this work demonstrates that the bottom‐up, simultaneous interfacial and bulk trap passivation using NSE modifiers is a promising strategy to overcome outstanding issues impeding further PSC advances.  相似文献   

17.
Cesium‐based inorganic perovskite solar cells (PSCs) are promising due to their potential for improving device stability. However, the power conversion efficiency of the inorganic PSCs is still low compared with the hybrid PSCs due to the large open‐circuit voltage (VOC) loss possibly caused by charge recombination. The use of an insulated shunt‐blocking layer lithium fluoride on electron transport layer SnO2 for better energy level alignment with the conduction band minimum of the CsPbI3‐xBrx and also for interface defect passivation is reported. In addition, by incorporating lead chloride in CsPbI3‐xBrx precursor, the perovskite film crystallinity is significantly enhanced and the charge recombination in perovksite is suppressed. As a result, optimized CsPbI3‐xBrx PSCs with a band gap of 1.77 eV exhibit excellent performance with the best VOC as high as 1.25 V and an efficiency of 18.64%. Meanwhile, a high photostability with a less than 6% efficiency drop is achieved for CsPbI3‐xBrx PSCs under continuous 1 sun equivalent illumination over 1000 h.  相似文献   

18.
Organic–inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley–Queisser limit of single‐junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss) in small‐ and large‐bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite–perovskite tandem solar cells with small V oc,loss. A fullerene variant, Indene‐C60 bis‐adduct, is used to achieve optimized interfacial contact in a small‐bandgap (≈1.2 eV) subcell, which facilitates higher quasi‐Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large‐bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite–perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state‐of‐the‐art silicon–perovskite tandem solar cells, which highlights the prospects of using perovskite–perovskite tandems for solar‐energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar‐to‐hydrogen efficiencies beyond 15%.  相似文献   

19.
Wide-bandgap perovskite solar cells (PSCs) are attracting increasing attention because they play an irreplaceable role in tandem solar cells. Nevertheless, wide-bandgap PSCs suffer large open-circuit voltage (VOC) loss and instability due to photoinduced halide segregation, significantly limiting their application. Herein, a bile salt (sodium glycochenodeoxycholate, GCDC, a natural product), is used to construct an ultrathin self-assembled ionic insulating layer firmly coating the perovskite film, which suppresses halide phase separation, reduces VOC loss, and improves device stability. As a result, 1.68 eV wide-bandgap devices with an inverted structure deliver a VOC of 1.20 V with an efficiency of 20.38%. The unencapsulated GCDC-treated devices are considerably more stable than the control devices, retaining 92% of their initial efficiency after 1392 h storage under ambient conditions and retaining 93% after heating at 65 °C for 1128 h in an N2 atmosphere. This strategy of mitigating ion migration via anchoring a nonconductive layer provides a simple approach to achieving efficient and stable wide-bandgap PSCs.  相似文献   

20.
Wide‐bandgap (WBG) formamidinium–cesium (FA‐Cs) lead iodide–bromide mixed perovskites are promising materials for front cells well‐matched with crystalline silicon to form tandem solar cells. They offer avenues to augment the performance of widely deployed commercial solar cells. However, phase instability, high open‐circuit voltage (Voc) deficit, and large hysteresis limit this otherwise promising technology. Here, by controlling the crystallization of FA‐Cs WBG perovskite with the aid of a formamide cosolvent, light‐induced phase segregation and hysteresis in perovskite solar cells are suppressed. The highly polar solvent additive formamide induces direct formation of the black perovskite phase, bypassing the yellow phases, thereby reducing the density of defects in films. As a result, the optimized WBG perovskite solar cells (PSCs) (Eg ≈ 1.75 eV) exhibit a high Voc of 1.23 V, reduced hysteresis, and a power conversion efficiency (PCE) of 17.8%. A PCE of 15.2% on 1.1 cm2 solar cells, the highest among the reported efficiencies for large‐area PSCs having this bandgap is also demonstrated. These perovskites show excellent phase stability and thermal stability, as well as long‐term air stability. They maintain ≈95% of their initial PCE after 1300 h of storage in dry air without encapsulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号