首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ultrathin two‐dimensional (2D) layered transition metal dichalcogenides (TMDs), such as MoS2, WS2, TiS2, TaS2, ReS2, MoSe2 and WSe2, have attracted considerable attention over the past six years owing to their unique properties and great potential in a wide range of applications. Aiming to achieve tunable properties and optimal application performances, great effort is devoted to the exploration of 2D multinary layered metal chalcogenide nanomaterials, which include ternary metal chalcogenides with well‐defined crystal structures, alloyed TMDs, heteroatom‐doped TMDs and 2D metal chalcogenide heteronanostructures. These novel 2D multinary layered metal chalcogenide nanomaterials exhibit some unique properties compared to 2D binary TMD counterparts, thus holding great promise in various potential applications including electronics/optoelectronics, catalysis, sensors, biomedicine, and energy storage and conversion with enhanced performances. This article focuses on the state‐of‐art progress on the preparation, characterization and applications of ultrathin 2D multinary layered metal chalcogenide nanomaterials.  相似文献   

2.
In this work, a one‐pot solution method for direct synthesis of interconnected ultrafine amorphous NiFe‐layered double hydroxide (NiFe‐LDH) (<5 nm) and nanocarbon using the molecular precursor of metal and carbon sources is presented for the first time. During the solvothermal synthesis of NiFe‐LDH, the organic ligand decomposes and transforms to amorphous carbon with graphitic nanodomains by catalytic effect of Fe. The confined growth of both NiFe‐LDH and carbon in one single sheet results in fully integrated amorphous NiFe‐LDH/C nanohybrid, allowing the harness of the high intrinsic activity of NiFe‐LDH due to (i) amorphous and distorted LDH structure, (ii) enhanced active surface area, and (iii) strong coupling between the active phase and carbon. As such, the resultant NiFe‐LDH/C exhibits superior activity and stability. Different from postdeposition or electrostatic self‐assembly process for the formation of LDH/C composite, this method offers one new opportunity to fabricate high‐performance oxygen evolution reaction and possibly other catalysts.  相似文献   

3.
Despite a few reports on the synthesis of ultrathin 2D nanosheets made of noble metals, it still remains a tremendous challenge to generate their ultrathin hollowed nanostructures, which are of particular interest in highly active catalysis due to their unique structural features. Here, the synthesis of ultrathin 2D Pd nanorings is reported with a hollow interior by selective epitaxial growth of Pd atoms on the periphery of the as‐preformed Pd nanosheets in combination with oxidative etching. This approach can be extended to fabricate Pd‐based bimetallic ultrathin nanorings such as Pd–Pt. The Pd nanorings exhibit substantially enhanced activity toward the hydrogenation of p‐nitrophenol, which is 2.2 and 33.4 times higher than that of the Pd nanosheets and commercial Pd black, respectively. Significantly, the Pd nanorings are highly stable with only less than 11% loss in activity compared to 45.7% loss of the Pd nanosheets and 72.2% loss of the Pd black after ten cycles.  相似文献   

4.
Electrochemical water oxidation is the key technology in water‐splitting reactions and rechargeable metal–air batteries, which is very attractive for renewable energy conversion and storage. Replacement of precious catalysts with cost‐effective and highly active alternatives is still a great challenge. Herein, based on theoretical predictions, holey structures are designed and fabricated on the free‐standing conventional 2D OER catalyst. By well‐controlled defects engineering, uniform tiny holes are created on the free‐standing Ni(OH)2 nanosheets via a sol–gel method, with the embedded Zn components as the template for holes production. The whole preparation process is feasible and effective to make full use of the basal plane of 2D nanomaterials, which can provide higher surface area, richer defects, more grain boundaries, and edge sites, as well as greater distorted surfaces. Meanwhile, these holes developed inside the sheet structure can supply tremendous permeable channels for ions adsorption and transportation, enable a fast interfacial charge transfer and accelerate the reaction process. The as‐prepared 2D holey Ni(OH)2 nanostructures exhibit excellent catalytic performance toward electrochemical water oxidation, with lower onset overpotentials and higher current densities compared with the pristine Ni(OH)2 catalyst, suggesting the holey defects engineering is a promising strategy for efficient water‐splitting devices and rechargeable metal–air batteries.  相似文献   

5.
Complementary water splitting electrocatalysts used simultaneously in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) can simplify water splitting systems. Herein, earth‐abundant NiMoFe (NMF) and phosphorized NiMoFeP (NMFP) are synthesized as complementary overall water splitting (OWS) catalysts. First, NMF is tested as both the HER and OER promoter, which exhibits low overpotentials of 68 (HER) and 337 mV (OER). A quaternary NMFP is then prepared by simple phosphorization of NMF, which shows a much lower OER overpotential of 286 mV. The enhanced OER activity is attributed to the unique surface/core structure of NMFP. The surface phosphate acts as a proton transport mediator and expedites the rate‐determining step. With the application of OER potential, the NMFP surface is composed of Ni(OH)2 and FeOOH, active sites for OER, but the inner core consists of Ni, Mo, and Fe metals, serving as a conductive electron pathway. OWS with NMF‐NMFP requires an applied voltage of 1.452 V to generate 10 mA cm?2, which is one of the lowest values among OWS results with transition‐metal‐based electrocatalysts. Furthermore, the catalysts are combined with tandem perovskite solar cells for photovoltaic (PV)‐electrolysis, producing a high solar‐to‐hydrogen (STH) conversion efficiency of 12.3%.  相似文献   

6.
7.
Heterogenous electrocatalysts based on transition metal sulfides (TMS) are being actively explored in renewable energy research because nanostructured forms support high intrinsic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, it is described how researchers are working to improve the performance of TMS‐based materials by manipulating their internal and external nanoarchitectures. A general introduction to the water‐splitting reaction is initially provided to explain the most important parameters in accessing the catalytic performance of nanomaterials catalysts. Later, the general synthetic methods used to prepare TMS‐based materials are explained in order to delve into the various strategies being used to achieve higher electrocatalytic performance in the HER. Complementary strategies can be used to increase the OER performance of TMS, resulting in bifunctional water‐splitting electrocatalysts for both the HER and the OER. Finally, the current challenges and future opportunities of TMS materials in the context of water splitting are summarized. The aim herein is to provide insights gathered in the process of studying TMS, and describe valuable guidelines for engineering other kinds of nanomaterial catalysts for energy conversion and storage technologies.  相似文献   

8.
The development of new materials/structures for efficient electrocatalytic water oxidation, which is a key reaction in realizing artificial photosynthesis, is an ongoing challenge. Herein, a Co(OH)F material as a new electrocatalyst for the oxygen evolution reaction (OER) is reported. The as‐prepared 3D Co(OH)F microspheres are built by 2D nanoflake building blocks, which are further woven by 1D nanorod foundations. Weaving and building the substructures (1D nanorods and 2D nanoflakes) provides high structural void porosity with sufficient interior space in the resulting 3D material. The hierarchical structure of this Co(OH)F material combines the merits of all material dimensions in heterogeneous catalysis. The anisotropic low‐dimensional (1D and 2D) substructures possess the advantages of a high surface‐to‐volume ratio and fast charge transport. The interconnectivity of the nanorods is also beneficial for charge transport. The high‐dimensional (3D) architecture results in sufficient active sites per the projected electrode surface area and is favorable for efficient mass diffusion during catalysis. A low overpotential of 313 mV is required to drive an OER current density of 10 mA cm?2 on a simple glassy carbon (GC) working electrode in a 1.0 m KOH aqueous solution.  相似文献   

9.
Herein, the facile preparation of ultrathin (≈3.8 nm in thickness) 2D cobalt phosphate (CoPi) nanoflakes through an oil‐phase method is reported. The obtained nanoflakes are composed of highly ordered mesoporous (≈3.74 nm in diameter) structure and exhibit an amorphous nature. Attractively, when doped with nickel, such 2D mesoporous Ni‐doped CoPi nanoflakes display decent electrocatalytic performances in terms of intrinsic activity, and low kinetic barrier toward the oxygen evolution reaction (OER). Particularly, the optimized 10 at% Ni‐doped CoPi nanoflakes (denoted as Ni10‐CoPi) deliver a low overpotential at 10 mA cm?2 (320 mV), small Tafel slope (44.5 mV dec?1), and high stability for OER in 1.0 m KOH solution, which is comparable to the state‐of‐the‐art RuO2 tested in the same condition (overpotential: 327 mV at 10 mA cm?2, Tafel slope: 73.7 mV dec?1). The robust framework coupled with good OER performance enables the 2D mesoporous Ni10‐CoPi nanoflakes to be a promising material for energy conversion applications.  相似文献   

10.
Developing non‐noble‐metal electrocatalysts with high activity and low cost for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of paramount importance for improving the generation of H2 fuel by electrocatalytic water‐splitting. This study puts forward a new N‐anion‐decorated Ni3S2 material synthesized by a simple one‐step calcination route, acting as a superior bifunctional electrocatalyst for the OER/HER for the first time. The introduction of N anions significantly modifies the morphology and electronic structure of Ni3S2, bringing high surface active sites exposure, enhanced electrical conductivity, optimal HER Gibbs free‐energy (ΔGH*), and water adsorption energy change (ΔGH2O*). Remarkably, the obtained N‐Ni3S2/NF 3D electrode exhibits extremely low overpotentials of 330 and 110 mV to reach a current density of 100 and 10 mA cm?2 for the OER and HER in 1.0 m KOH, respectively. Moreover, an overall water‐splitting device comprising this electrode delivers a current density of 10 mA cm?2 at a very low cell voltage of 1.48 V. Our finding introduces a new way to design advanced bifunctional catalysts for water splitting.  相似文献   

11.
Electrochemical water splitting is a promising method for storing light/electrical energy in the form of H2 fuel; however, it is limited by the sluggish anodic oxygen evolution reaction (OER). To improve the accessibility of H2 production, it is necessary to develop an efficient OER catalyst with large surface area, abundant active sites, and good stability, through a low‐cost fabrication route. Herein, a facile solution reduction method using NaBH4 as a reductant is developed to prepare iron‐cobalt oxide nanosheets (Fex Coy ‐ONSs) with a large specific surface area (up to 261.1 m2 g?1), ultrathin thickness (1.2 nm), and, importantly, abundant oxygen vacancies. The mass activity of Fe1Co1‐ONS measured at an overpotential of 350 mV reaches up to 54.9 A g?1, while its Tafel slope is 36.8 mV dec?1; both of which are superior to those of commercial RuO2, crystalline Fe1Co1‐ONP, and most reported OER catalysts. The excellent OER catalytic activity of Fe1Co1‐ONS can be attributed to its specific structure, e.g., ultrathin nanosheets that could facilitate mass diffusion/transport of OH? ions and provide more active sites for OER catalysis, and oxygen vacancies that could improve electronic conductivity and facilitate adsorption of H2O onto nearby Co3+ sites.  相似文献   

12.
Conjugated polymers are promising light harvesters for water reduction/oxidation due to their simple synthesis and adjustable bandgap. Herein, both cyanamide and triazole functional groups are first incorporated into a heptazine‐based carbon nitride (CN) polymer, resulting in a mesoporous conjugated cyanamide‐triazole‐heptazine polymer (CTHP) with different compositions by increasing the quantity of cyanamide/triazole units in the CN backbone. Varying the compositions of CTHP modulates its electronic structures, mesoporous morphologies, and redox energies, resulting in a significantly improved photocatalytic performance for both H2 and O2 evolution under visible light irradiation. A remarkable H2 evolution rate of 12723 µmol h?1 g?1 is observed, resulting in a high apparent quantum yield of 11.97% at 400 nm. In parallel, the optimized photocatalyst also exhibits an O2 evolution rate of 221 µmol h?1 g?1, 9.6 times higher than the CN counterpart, with the value being the highest among the reported CN‐based bifunctional photocatalysts. This work provides an efficient molecular engineering approach for the rational design of functional polymeric photocatalysts.  相似文献   

13.
The creation of three‐dimensional (3D) structures from two‐dimensional (2D) nanomaterial building blocks enables novel chemical, mechanical or physical functionalities that cannot be realized with planar thin films or in bulk materials. Here, we review the use of emerging 2D materials to create complex out‐of‐plane surface topographies and 3D material architectures. We focus on recent approaches that yield periodic textures or patterns, and present four techniques as case studies: (i) wrinkling and crumpling of planar sheets, (ii) encapsulation by crumpled nanosheet shells, (iii) origami folding and kirigami cutting to create programmed curvature, and (iv) 3D printing of 2D material suspensions. Work to date in this field has primarily used graphene and graphene oxide as the 2D building blocks, and we consider how these unconventional approaches may be extended to alternative 2D materials and their heterostructures. Taken together, these emerging patterning and texturing techniques represent an intriguing alternative to conventional materials synthesis and processing methods, and are expected to contribute to the development of new composites, stretchable electronics, energy storage devices, chemical barriers, and biomaterials.  相似文献   

14.
The design of cost‐efficient earth‐abundant catalysts with superior performance for the electrochemical water splitting is highly desirable. Herein, a general strategy for fabricating superior bifunctional water splitting electrodes is reported, where cost‐efficient earth‐abundant ultrathin Ni‐based nanosheets arrays are directly grown on nickel foam (NF). The newly created Ni‐based nanosheets@NF exhibit unique features of ultrathin building block, 3D hierarchical structure, and alloy effect with the optimized Ni5Fe layered double hydroxide@NF (Ni5Fe LDH@NF) exhibiting low overpotentials of 210 and 133 mV toward both oxygen evolution reaction and hydrogen evolution reaction at 10 mA cm?2 in alkaline condition, respectively. More significantly, when applying as the bifunctional overall water splitting electrocatalyst, the Ni5Fe LDH@NF shows an appealing potential of 1.59 V at 10 mA cm?2 and also superior durability at the very high current density of 50 mA cm?2.  相似文献   

15.
The development of efficient water‐oxidation electrocatalysts based on inexpensive and earth‐abundant materials is significant to enable water splitting as a future renewable energy source. Herein, the synthesis of novel FeNiP solid‐solution nanoplate (FeNiP‐NP) arrays and their use as an active catalyst for high‐performance water‐oxidation catalysis are reported. The as‐prepared FeNiP‐NP catalyst on a 3D nickel foam substrate exhibits excellent electrochemical performance with a very low overpotential of only 180 mV to reach a current density of 10 mA cm?2 and an onset overpotential of 120 mV in 1.0 m KOH for the oxygen evolution reaction (OER). The slope of the Tafel plot is as low as 76.0 mV dec?1. Furthermore, the long‐term electrochemical stability of the FeNiP‐NP electrode is investigated by cyclic voltammetry (CV) at 1.10–1.55 V versus reversible hydrogen electrode (RHE), demonstrating very stable performance with negligible loss in activity after 1000 CV cycles. This present FeNiP‐NP solid solution is thought to represent the best OER catalytic activity among the non‐noble metal catalysts reported so far.  相似文献   

16.
Converting solar energy into hydrogen via photoelectrochemical (PEC) water splitting is one of the most promising approaches for a sustainable energy supply. Highly active, cost‐effective, and robust photoelectrodes are undoubtedly crucial for the PEC technology. To achieve this goal, transition‐metal‐based electrocatalysts have been widely used as cocatalysts to improve the performance of PEC cells for water splitting. Herein, this Review summarizes the recent progresses of the design, synthesis, and application of transition‐metal‐based electrocatalysts as cocatalysts for PEC water splitting. Mo, Ni, Co‐based electrocatalysts for the hydrogen evolution reaction (HER) and Co, Ni, Fe‐based electrocatalysts for the oxygen evolution reaction (OER) are emphasized as cocatalysts for efficient PEC HER and OER, respectively. Particularly, some most efficient and robust photoelectrode systems with record photocurrent density or durability for the half reactions of HER and OER are highlighted and discussed. In addition, the self‐biased PEC devices with high solar‐to‐hydrogen efficiency based on earth‐abundant materials are also addressed. Finally, this Review is concluded with a summary and remarks on some challenges and opportunities for the further development of transition‐metal‐based electrocatalysts as cocatalysts for PEC water splitting.  相似文献   

17.
Developing efficient non‐noble and earth‐abundant hydrogen‐evolving electrocatalysts is highly desirable for improving the energy efficiency of water splitting in base. Molybdenum disulfide (MoS2) is a promising candidate, but its catalytic activity is kinetically retarded in alkaline media due to the unfavorable water adsorption and dissociation feature. A heterogeneous electrocatalyst is reported that is constructed by selenium‐doped MoS2 (Se‐MoS2) particles on 3D interwoven cobalt diselenide (CoSe2) nanowire arrays that drives the hydrogen evolution reaction (HER) with fast reaction kinetics in base. The resultant Se‐MoS2/CoSe2 hybrid exhibits an outstanding catalytic HER performance with extremely low overpotentials of 30 and 93 mV at 10 and 100 mA cm–2 in base, respectively, which outperforms most of the inexpensive alkaline HER catalysts, and is among the best alkaline catalytic activity reported so far. Moreover, this hybrid catalyst shows exceptional catalytic performance with very low overpotentials of 84 and 95 mV at 10 mA cm–2 in acidic and neutral electrolytes, respectively, implying robust pH universality of this hybrid catalyst. This work may provide new inspirations for the development of high‐performance MoS2‐based HER electrocatalysts in unfavorable basic media for promising catalytic applications.  相似文献   

18.
The metallic 1T phase of WS2 (1T‐WS2), which boosts the charge transfer between the electron source and active edge sites, can be used as an efficient electrocatalyst for the hydrogen evolution reaction (HER). As the semiconductor 2H phase of WS2 (2H‐WS2) is inherently stable, methods for synthesizing 1T‐WS2 are limited and complicated. Herein, a uniform wafer‐scale 1T‐WS2 film is prepared using a plasma‐enhanced chemical vapor deposition (PE‐CVD) system. The growth temperature is maintained at 150 °C enabling the direct synthesis of 1T‐WS2 films on both rigid dielectric and flexible polymer substrates. Both the crystallinity and number of layers of the as‐grown 1T‐WS2 are verified by various spectroscopic and microscopic analyses. A distorted 1T structure with a 2a0 × a0 superlattice is observed using scanning transmission electron microscopy. An electrochemical analysis of the 1T‐WS2 film demonstrates its similar catalytic activity and high durability as compared to those of previously reported untreated and planar 1T‐WS2 films synthesized with CVD and hydrothermal methods. The 1T‐WS2 does not transform to stable 2H‐WS2, even after a 700 h exposure to harsh catalytic conditions and 1000 cycles of HERs. This synthetic strategy can provide a facile method to synthesize uniform 1T‐phase 2D materials for electrocatalysis applications.  相似文献   

19.
In the near future, sustainable energy conversion and storage will largely depend on the electrochemical splitting of water into hydrogen and oxygen. Perceiving this, countless research works focussing on the fundamentals of electrocatalysis of water splitting and on performance improvements are being reported everyday around the globe. Electrocatalysts of high activity, selectivity, and stability are anticipated as they directly determine energy‐ and cost efficiency of water electrolyzers. Amorphous electrocatalysts with several advantages over crystalline counterparts are found to perform better in electrocatalytic water splitting. There are plenty of studies witnessing performance enhancements in electrocatalysis of water splitting while employing amorphous materials as catalysts. The harmony between the flexibility of amorphous electrocatalysts and electrocatalysis of water splitting (both the oxygen evolution reaction [OER] and the hydrogen evolution reaction [HER]) is one of the untold and unsummarized stories in the field of electrocatalytic water splitting. This Review is devoted to comprehensively discussing the upsurge of amorphous electrocatalysts in electrochemical water splitting. In addition to that, the basics of electrocatalysis of water splitting are also elaborately introduced and the characteristics of a good electrocatalyst for OER and HER are discussed.  相似文献   

20.
Herein, the hydrothermal synthesis of porous ultrathin ternary NiFeV layer double hydroxides (LDHs) nanosheets grown on Nickel foam (NF) substrate as a highly efficient electrode toward overall water splitting in alkaline media is reported. The lateral size of the nanosheets is about a few hundreds of nanometers with the thickness of ≈10 nm. Among all molar ratios investigated, the Ni0.75Fe0.125V0.125‐LDHs/NF electrode depicts the optimized performance. It displays an excellent catalytic activity with a modest overpotential of 231 mV for the oxygen evolution reaction (OER) and 125 mV for the hydrogen evolution reaction (HER) in 1.0 m KOH electrolyte. Its exceptional activity is further shown in its small Tafel slope of 39.4 and 62.0 mV dec?1 for OER and HER, respectively. More importantly, remarkable durability and stability are also observed. When used for overall water splitting, the Ni0.75Fe0.125V0.125‐LDHs/NF electrodes require a voltage of only 1.591 V to reach 10 mA cm?2 in alkaline solution. These outstanding performances are mainly attributed to the synergistic effect of the ternary metal system that boosts the intrinsic catalytic activity and active surface area. This work explores a promising way to achieve the optimal inexpensive Ni‐based hydroxide electrocatalyst for overall water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号