首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
All‐inorganic perovskites have high carrier mobility, long carrier diffusion length, excellent visible light absorption, and well overlapping with localized surface plasmon resonance (LSPR) of noble metal nanocrystals (NCs). The high‐performance photodetectors can be constructed by means of the intrinsic outstanding photoelectric properties, especially plasma coupling. Here, for the first time, inorganic perovskite photodetectors are demonstrated with synergetic effect of preferred‐orientation film and plasmonic with both high performance and solution process virtues, evidenced by 238% plasmonic enhancement factor and 106 on/off ratio. The CsPbBr3 and Au NC inks are assembled into high‐quality films by centrifugal‐casting and spin‐coating, respectively, which lead to the low cost and solution‐processed photodetectors. The remarkable near‐field enhancement effect induced by the coupling between Au LSPR and CsPbBr3 photogenerated carriers is revealed by finite‐difference time‐domain simulations. The photodetector exhibits a light on/off ratio of more than 106 under 532 nm laser illumination of 4.65 mW cm?2. The photocurrent increases from 0.67 to 2.77 μA with centrifugal‐casting. Moreover, the photocurrent rises from 245.6 to 831.1 μA with Au NCs plasma enhancement, leading to an enhancement factor of 238%, which is the most optimal report among the LSPR‐enhanced photodetectors, to the best of our knowledge. The results of this study suggest that all‐inorganic perovskites are promising semiconductors for high‐performance solution‐processed photodetectors, which can be further enhanced by Au plasmonic effect, and hence have huge potentials in optical communication, safety monitoring, and biological sensing.  相似文献   

4.
Hybrid organic–inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite‐based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure‐based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap‐tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self‐powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field.  相似文献   

5.
6.
7.
Low trap‐state density, high carrier mobility, and efficient charge carrier collection are key parameters for photodetectors with high sensitivity and fast response time. This study demonstrates a simple solution growth method to prepare CsPbBr3 microcrystals (MCs) with low trap‐state density. Time‐dependent photoluminescence study with one‐photon excitation (OPE) and two‐photon excitation (TPE) indicates that CsPbBr3 MCs exhibit fast carrier diffusion with carrier mobility over 100 cm2 V?1 S?1. Furthermore, CsPbBr3 MC‐based photodetectors with high charge carriers' collection efficiency are fabricated. Such photodetectors show ultrahigh responsivity (R ) up to 6 × 104 A W?1 with OPE and high R up to 6 A W?1 with TPE. The R for OPE is over one order of magnitude higher (the R for TPE is three orders of magnitude higher) than that of previously reported all‐inorganic perovskite‐based photodetectors. Moreover, the photodetectors exhibit fast response time of ≈1 ms, which corresponds to a gain ≈105 and a gain‐ bandwidth product of 108 Hz for OPE (a gain ≈103 and a gain‐bandwidth product of 106 Hz for TPE).  相似文献   

8.
9.
Organic–inorganic halide perovskites are promising photodetector materials due to their strong absorption, large carrier mobility, and easily tunable bandgap. Up to now, perovskite photodetectors are mainly based on polycrystalline thin films, which have some undesired properties such as large defective grain boundaries hindering the further improvement of the detector performance. Here, perovskite thin‐single‐crystal (TSC) photodetectors are fabricated with a vertical p–i–n structure. Due to the absence of grain‐boundaries, the trap densities of TSCs are 10–100 folds lower than that of polycrystalline thin films. The photodetectors based on CH3NH3PbBr3 and CH3NH3PbI3 TSCs show low noise of 1–2 fA Hz?1/2, yielding a high specific detectivity of 1.5 × 1013 cm Hz1/2 W?1. The absence of grain boundaries reduces charge recombination and enables a linear response under strong light, superior to polycrystalline photodetectors. The CH3NH3PbBr3 photodetectors show a linear response to green light from 0.35 pW cm?2 to 2.1 W cm?2, corresponding to a linear dynamic range of 256 dB.  相似文献   

10.
Flexible perovskite photodetectors are usually constructed on indium‐tin‐oxide‐coated polymer substrates, which are expensive, fragile, and not resistant to high temperature. Herein, for the first time, a high‐performance flexible perovskite photodetector is fabricated based on low‐cost carbon cloth via a facile solution processable strategy. In this device, perovskite microcrystal and Spiro‐OMeTAD (hole transporting material) blended film act as active materials for light detection, and carbon cloth serves as both a flexible substrate and a conductive electrode. The as‐fabricated photodetector shows a broad spectrum response from ultraviolet to near‐infrared light, high responsivity, fast response speed, long‐term stability, and self‐powered capability. Flexible devices show negligible degradation after several tens of bending cycles and at the extremely bending angle of 180°. This work promises a new technique to construct flexible, high‐performance photodetectors with low cost and self‐powered capability.  相似文献   

11.
12.
Solution‐processed semiconductors such as conjugated polymers have great potential in large‐area electronics. While extremely appealing due to their low‐temperature and high‐throughput deposition methods, their integration in high‐performance circuits has been difficult. An important remaining challenge is the achievement of low‐voltage circuit operation. The present study focuses on state‐of‐the‐art polymer thin‐film transistors based on poly(indacenodithiophene‐benzothiadiazole) and shows that the general paradigm for low‐voltage operation via an enhanced gate‐to‐channel capacitive coupling is unable to deliver high‐performance device behavior. The order‐of‐magnitude longitudinal‐field reduction demanded by low‐voltage operation plays a fundamental role, enabling bulk trapping and leading to compromised contact properties. A trap‐reduction technique based on small molecule additives, however, is capable of overcoming this effect, allowing low‐voltage high‐mobility operation. This approach is readily applicable to low‐voltage circuit integration, as this work exemplifies by demonstrating high‐performance analog differential amplifiers operating at a battery‐compatible power supply voltage of 5 V with power dissipation of 11 µW, and attaining a voltage gain above 60 dB at a power supply voltage below 8 V. These findings constitute an important milestone in realizing low‐voltage polymer transistors for solution‐based analog electronics that meets performance and power‐dissipation requirements for a range of battery‐powered smart‐sensing applications.  相似文献   

13.
14.
This paper reports highly bright and efficient CsPbBr3 perovskite light‐emitting diodes (PeLEDs) fabricated by simple one‐step spin‐coating of uniform CsPbBr3 polycrystalline layers on a self‐organized buffer hole injection layer and stoichiometry‐controlled CsPbBr3 precursor solutions with an optimized concentration. The PeLEDs have maximum current efficiency of 5.39 cd A?1 and maximum luminance of 13752 cd m?2. This paper also investigates the origin of current hysteresis, which can be ascribed to migration of Br? anions. Temperature dependence of the electroluminescence (EL) spectrum is measured and the origins of decreased spectrum area, spectral blue‐shift, and linewidth broadening are analyzed systematically with the activation energies, and are related with Br? anion migration, thermal dissociation of excitons, thermal expansion, and electron–phonon interaction. This work provides simple ways to improve the efficiency and brightness of all‐inorganic polycrystalline PeLEDs and improves understanding of temperature‐dependent ion migration and EL properties in inorganic PeLEDs.  相似文献   

15.
16.
17.
Organometal halide perovskites are new light‐harvesting materials for lightweight and flexible optoelectronic devices due to their excellent optoelectronic properties and low‐temperature process capability. However, the preparation of high‐quality perovskite films on flexible substrates has still been a great challenge to date. Here, a novel vapor–solution method is developed to achieve uniform and pinhole‐free organometal halide perovskite films on flexible indium tin oxide/poly(ethylene terephthalate) substrates. Based on the as‐prepared high‐quality perovskite thin films, high‐performance flexible photodetectors (PDs) are constructed, which display a nR value of 81 A W?1 at a low working voltage of 1 V, three orders higher than that of previously reported flexible perovskite thin‐film PDs. In addition, these flexible PDs exhibit excellent flexural stability and durability under various bending situations with their optoelectronic performance well retained. This breakthrough on the growth of high‐quality perovskite thin films opens up a new avenue to develop high‐performance flexible optoelectronic devices.  相似文献   

18.
Due to their low cost and ease of integration, solution‐processed lateral photodetectors (PDs) are becoming an important device type among the PD family. In recent years, enormous effort has been devoted to improving their performances, and great achievements have been made. A summary of the core progress, especially from the perspective of design principles and device physics, is necessary to further the development of the field, but is currently lacking. Here, to address this need, first, the working mechanism of PDs and the device figures‐of‐merit are introduced. Second, by classifying the active materials into four categories, including inorganic, organic, hybrid, and perovskite, the developed strategies toward high performance are discussed respectively. To close, the common physical rules behind all these strategies are generalized, and suggestions for future development are given accordingly.  相似文献   

19.
All‐solution‐processed pure formamidinium‐based perovskite light‐emitting diodes (PeLEDs) with record performance are successfully realized. It is found that the FAPbBr3 device is hole dominant. To achieve charge carrier balance, on the anode side, PEDOT:PSS 8000 is employed as the hole injection layer, replacing PEDOT:PSS 4083 to suppress the hole current. On the cathode side, the solution‐processed ZnO nanoparticle (NP) is used as the electron injection layer in regular PeLEDs to improve the electron current. With the smallest ZnO NPs (2.9 nm) as electron injection layer (EIL), the solution‐processed PeLED exhibits a highest forward viewing power efficiency of 22.3 lm W?1, a peak current efficiency of 21.3 cd A?1, and an external quantum efficiency of 4.66%. The maximum brightness reaches a record 1.09 × 105 cd m?2. A record lifetime T50 of 436 s is achieved at the initial brightness of 10 000 cd m?2. Not only do PEDOT:PSS 8000 HIL and ZnO NPs EIL modulate the injected charge carriers to reach charge balance, but also they prevent the exciton quenching at the interface between the charge injection layer and the light emission layer. The subbandgap turn‐on voltage is attributed to Auger‐assisted energy up‐conversion process.  相似文献   

20.
This paper reports a facile and scalable process to achieve high performance red perovskite light‐emitting diodes (LEDs) by introducing inorganic Cs into multiple quantum well (MQW) perovskites. The MQW structure facilitates the formation of cubic CsPbI3 perovskites at low temperature, enabling the Cs‐based QWs to provide pure and stable red electroluminescence. The versatile synthesis of MQW perovskites provides freedom to control the crystallinity and morphology of the emission layer. It is demonstrated that the inclusion of chloride can further improve the crystallization and consequently the optical properties of the Cs‐based MQW perovskites, inducing a low turn‐on voltage of 2.0 V, a maximum external quantum efficiency of 3.7%, a luminance of ≈440 cd m?2 at 4.0 V. These results suggest that the Cs‐based MQW LED is among the best performing red perovskite LEDs. Moreover, the LED device demonstrates a record lifetime of over 5 h under a constant current density of 10 mA cm?2. This work suggests that the MQW perovskites is a promising platform for achieving high performance visible‐range electroluminescence emission through high‐throughput processing methods, which is attractive for low‐cost lighting and display applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号