首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nanotechnology holds great promise for a plethora of potential applications. The interaction of engineered nanomaterials with living cells, tissues, and organisms is, however, only partly understood. Microscopic investigations of nano‐bio interactions are mostly performed with a few model nanoparticles (NPs) which are easy to visualize, such as fluorescent quantum dots. Here the possibility to visualize nonfluorescent NPs with multiphoton excitation is investigated. Signals from silver (Ag), titanium dioxide (TiO2), and silica (SiO2) NPs in nonbiological environments are characterized to determine signal dependency on excitation wavelength and intensity as well as their signal stability over time. Ag NPs generate plasmon‐induced luminescence decaying over time. TiO2 NPs induce photoluminescent signals of variable intensities and in addition strong third harmonic generation (THG). Optimal settings for microscopic detection are determined and then applied for visualization of these two particle types in living cells, in murine muscle tissue, and in the murine blood stream. Silica NPs produce a THG signal, but in living cells it cannot be discriminated sufficiently from endogenous cellular structures. It is concluded that multiphoton excitation is a viable option for studies of nano‐bio interactions not only for fluorescent but also for some types of nonfluorescent NPs.  相似文献   

2.
Responsive nanomaterials have emerged as promising candidates as drug delivery vehicles in order to address biomedical diseases such as cancer. In this work, polymer‐based responsive nanoparticles prepared by a supramolecular approach are loaded with doxorubicin (DOX) for the cancer therapy. The nanoparticles contain disulfide bonds within the polymer network, allowing the release of the DOX payload in a reducing environment within the endoplasm of cancer cells. In addition, the loaded drug can also be released under acidic environment. In vitro anticancer studies using redox and pH dual responsive nanoparticles show excellent performance in inducing cell death and apoptosis. Zebrafish larvae treated with DOX‐loaded nanoparticles exhibit an improved viability as compared with the cases treated with free DOX by the end of a 3 d treatment. Confocal imaging is utilized to provide the daily assessment of tumor size on zebrafish larva models treated with DOX‐loaded nanoparticles, presenting sustainable reduction of tumor. This work demonstrates the development of functional nanoparticles with dual responsive properties for both in vitro and in vivo drug delivery in the cancer therapy.  相似文献   

3.
Speed, resolution and sensitivity of today's fluorescence bioimaging can be drastically improved by fluorescent nanoparticles (NPs) that are many‐fold brighter than organic dyes and fluorescent proteins. While the field is currently dominated by inorganic NPs, notably quantum dots (QDs), fluorescent polymer NPs encapsulating large quantities of dyes (dye‐loaded NPs) have emerged recently as an attractive alternative. These new nanomaterials, inspired from the fields of polymeric drug delivery vehicles and advanced fluorophores, can combine superior brightness with biodegradability and low toxicity. Here, we describe the strategies for synthesis of dye‐loaded polymer NPs by emulsion polymerization and assembly of pre‐formed polymers. Superior brightness requires strong dye loading without aggregation‐caused quenching (ACQ). Only recently several strategies of dye design were proposed to overcome ACQ in polymer NPs: aggregation induced emission (AIE), dye modification with bulky side groups and use of bulky hydrophobic counterions. The resulting NPs now surpass the brightness of QDs by ≈10‐fold for a comparable size, and have started reaching the level of the brightest conjugated polymer NPs. Other properties, notably photostability, color, blinking, as well as particle size and surface chemistry are also systematically analyzed. Finally, major and emerging applications of dye‐loaded NPs for in vitro and in vivo imaging are reviewed.  相似文献   

4.
5.
6.
Conjugated polymers have been increasingly studied for photothermal therapy (PTT) because of their merits including large absorption coefficient, facile tuning of exciton energy dissipation through nonradiative decay, and good therapeutic efficacy. The high photothermal conversion efficiency (PCE) is the key to realize efficient PTT. Herein, a donor–acceptor (D–A) structured porphyrin‐containing conjugated polymer (PorCP) is reported for efficient PTT in vitro and in vivo. The D–A structure introduces intramolecular charge transfer along the backbone, resulting in redshifted Q band, broadened absorption, and increased extinction coefficient as compared to the state‐of‐art porphyrin‐based photothermal reagent. Through nanoencapsulation, the dense packing of a large number of PorCP molecules in a single nanoparticle (NP) leads to favorable nonradiative decay, good photostability, and high extinction coefficient of 4.23 × 104m ?1 cm?1 at 800 nm based on porphyrin molar concentration and the highest PCE of 63.8% among conjugated polymer NPs. With the aid of coloaded fluorescent conjugated polymer, the cellular uptake and distribution of the PorCP in vitro can be clearly visualized, which also shows effective photothermal tumor ablation in vitro and in vivo. This research indicates a new design route of conjugated polymer‐based photothermal therapeutic materials for potential personalized theranostic nanomedicine.  相似文献   

7.
Single‐chain conjugated polymer (CP) dots embedded nanoparticles (NPs) bearing cell penetration peptide (TAT) as surface ligands are synthesized for long term cancer cell tracing applications. The CPNPs are fabricated by matrix‐encapsulation method and the embedded CPs can be modulated into spherical dots with different size upon alteration of feed concentrations. Single‐chain CP dots are formed upon decreasing feed concentration to 0.2 mg/mL, where CPNPs exhibit highest fluorescence quantum yield of 32%. Maleimide is introduced as the new NP surface functional group, which favors easy conjugation with cell penetration peptide via click chemistry to preserve its biofunctions. The obtained CPNPs show high brightness and good biocompatibility, which allow cell tracing for over 9 generations, superior to commercial cell tracker Qtracker 585.  相似文献   

8.
9.
Recent advances in super‐resolution microscopy and fluorescence bioimaging allow exploring previously inaccessible biological processes. To this end, there is a need for novel fluorescent probes with specific features in size, photophysical properties, colloidal and optical stabilities, as well as biocompatibility and ability to evade the reticuloendothelial system. Herein, novel fluorescent nanoparticles are introduced based on an inherently fluorescent polypyrazoline (PPy) core and a polyethylene glycol (PEG) shell, which address all aforementioned challenges. Synthesis of the PPy‐PEG amphiphilic block copolymer by phototriggered step‐growth polymerization is investigated by NMR spectroscopy, size‐exclusion chromatography, and mass spectrometry. The corresponding nanoparticles are characterized for their luminescent properties and hydrodynamic size in various aqueous environments (e.g., cell culture media). PPy nanoparticles particularly exhibit a large Stokes shift (Δλ = 160 nm or Δν > 7000 cm?1) with visible light excitation and strong colloidal stability. While clearance by macrophages and endothelial cells is minimal, PPy displays good biocompatibility. Finally, PPy nanoparticles prove to be long circulating when injected in zebrafish embryos, as observed by in vivo time‐lapse fluorescence microscopy. In summary, PPy nanoparticles are highly promising to be further developed as fluorescent nanodelivery systems with low toxicity and exquisite retention in the blood stream.  相似文献   

10.
11.
12.
Persistent luminescence nanoparticles (PLNPs) with rechargeable near‐infrared afterglow properties attract much attention for tumor diagnosis in living animals since they can avoid tissue autofluorescence and greatly improve the signal‐to‐background ratio. Using UV, visible light, or X‐ray as excitation sources to power up persistent luminescence (PL) faces the challenges such as limited tissue penetration, inefficient charging capability, or tissue damage caused by irradiation. Here, it is proved that radiopharmaceuticals can efficiently excite ZnGa2O4:Cr3+ nanoparticles (ZGCs) for both fluorescence and afterglow luminescence via Cerenkov resonance energy transfer as well as ionizing radiation. 18F‐FDG, a clinically approved tumor‐imaging radiopharmaceutical with a short decay half‐life around 110 min, is successfully used as the internal light source to in vivo excite intravenously injected ZGCs for tumor luminescence imaging over 3 h. The luminescence with similar decay time can be re‐obtained for multiple times upon injection of 18F‐FDG at any time needed with no health concern. It is believed this strategy can not only provide tumor luminescence imaging with high sensitivity, high contrast, and long decay time at desired time, but also guarantee the patients much less radiation exposure, greatly benefiting image‐guided surgery in the future.  相似文献   

13.
Sunscreens containing ZnO and TiO2 nanoparticles (NPs) are increasingly applied to skin over long time periods to reduce the risk of skin cancer. However, long‐term toxicological studies of NPs are very sparse. The in vitro toxicity of ZnO and TiO2 NPs on keratinocytes over short‐ and long‐term applications is reported. The effects studied are intracellular formation of radicals, alterations in cell morphology, mitochondrial activity, and cell‐cycle distribution. Cellular response depends on the type of NP, concentration, and exposure time. ZnO NPs have more pronounced adverse effects on keratinocytes than TiO2. TiO2 has no effect on cell viability up to 100 μg mL?1, whereas ZnO reduces viability above 15 μg mL?1 after short‐term exposure. Prolonged exposure to ZnO NPs at 10 μg mL?1 results in decreased mitochondrial activity, loss of normal cell morphology, and disturbances in cell‐cycle distribution. From this point of view TiO2 has no harmful effect. More nanotubular intercellular structures are observed in keratinocytes exposed to either type of NP than in untreated cells. This observation may indicate cellular transformation from normal to tumor cells due to NP treatment. Transmission electron microscopy images show NPs in vesicles within the cell cytoplasm, particularly in early and late endosomes and amphisomes. Contrary to insoluble TiO2, partially soluble ZnO stimulates generation of reactive oxygen species to swamp the cell redox defense system thus initiating the death processes, seen also in cell‐cycle distribution and fluorescence imaging. Long‐term exposure to NPs has adverse effects on human keratinocytes in vitro, which indicates a potential health risk.  相似文献   

14.
15.
16.
Bio-sprays can directly form pre-organized cell-bearing structures for applications ranging from engineering functional tissues to the forming of cultures, most useful for modeling disease, to the discovery and development of drugs. Bio-electrosprays and aerodynamically assisted bio-jets, are leading approaches that have been demonstrated as having far-reaching ramifications for regenerative biology and medicine.  相似文献   

17.
A new strategy is presented for using doped small‐molecule organic nanoparticles (NPs) to achieve high‐performance fluorescent probes with strong brightness, large Stokes shifts and tunable emissions for in vitro and in vivo imaging. The host organic NPs are used not only as carriers to encapsulate different doped dyes, but also as fluorescence resonance energy transfer donors to couple with the doped dyes (as acceptors) to achieve multicolor luminescence with amplified emissions (AE). The resulting optimum green emitting NPs show high brightness with quantum yield (QY) of up to 45% and AE of 12 times; and the red emitting NPs show QY of 14% and AE of 10 times. These highly‐luminescent doped NPs can be further surface modified with poly(maleic anhydride‐alt‐1‐octadecene)‐polyethylene glycol (C18PMH‐PEG), endowing them with excellent water dispersibility and robust stability in various bio‐environments covering wide pH values from 2 to 10. In this study, cytotoxicity studies and folic acid targeted cellular imaging of these multicolor probes are carried out to demonstrate their potential for in vitro imaging. On this basis, applications of the NP probes in in vivo and ex vivo imaging are also investigated. Intense fluorescent signals of the doped NPs are distinctly, selectively and spatially resolved in tumor sites with high sensitivity, due to the preferential accumulation of the NPs in tumor sites through the passive enhanced permeability and retention effect. The results clearly indicate that these doped NPs are promising fluorescent probes for biomedical applications.  相似文献   

18.
19.
20.
Optogenetics is an optical technique that exploits visible light for selective neuromodulation with spatio‐temporal precision. Despite enormous effort, the effective stimulation of targeted neurons, which are located in deeper structures of the nervous system, by visible light, remains a technical challenge. Compared to visible light, near‐infrared illumination offers a higher depth of tissue penetration owing to a lower degree of light attenuation. Herein, an overview of advances in developing new modalities for neural circuitry modulation utilizing upconversion‐nanoparticle‐mediated optogenetics is presented. These developments have led to minimally invasive optical stimulation and inhibition of neurons with substantially improved selectivity, sensitivity, and spatial resolution. The focus is to provide a comprehensive review of the mechanistic basis for evaluating upconversion parameters, which will be useful in designing, executing, and reporting optogenetic experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号