首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of high‐performance and low‐cost nonprecious metal electrocatalysts is critical for eco‐friendly hydrogen production through electrolysis. Herein, a novel nanoflower‐like electrocatalyst comprising few‐layer nitrogen‐doped graphene‐encapsulated nickel–copper alloy directly on a porous nitrogen‐doped graphic carbon framework (denoted as Nix Cuy @ NG‐NC) is successfully synthesized using a facile and scalable method through calcinating the carbon, copper, and nickel hydroxy carbonate composite under inert atmosphere. The introduction of Cu can effectively modulate the morphologies and hydrogen evolution reaction (HER) performance. Moreover, the calcination temperature is an important factor to tune the thickness of graphene layers of the Nix Cuy @ NG‐NC composites and the associated electrocatalytic performance. Due to the collective effects including unique porous flowered architecture and the synergetic effect between the bimetallic alloy core and graphene shell, the Ni3Cu1@ NG‐NC electrocatalyst obtained under optimized conditions exhibits highly efficient and ultrastable activity toward HER in harsh environments, i.e., a low overpotential of 122 mV to achieve a current density of 10 mA cm?2 with a low Tafel slope of 84.2 mV dec?1 in alkaline media, and a low overpotential of 95 mV to achieve a current density of 10 mA cm?2 with a low Tafel slope of 77.1 mV dec?1 in acidic electrolyte.  相似文献   

2.
Developing earth‐abundant and efficient electrocatalysts for photoelectrochemical water splitting is critical to realizing a high‐performance solar‐to‐hydrogen energy conversion process. Herein, phosphorus‐rich colloidal cobalt diphosphide nanocrystals (CoP2 NCs) are synthesized via hot injection. The CoP2 NCs show a Pt‐like hydrogen evolution reaction (HER) electrocatalytic activity in acidic solution with a small overpotential of 39 mV to achieve ?10 mA cm?2 and a very low Tafel slope of 32 mV dec?1. Density functional theory (DFT) calculations reveal that the high P content both physically separates Co atoms to prevent H from over binding to multiple Co atoms, while simultaneously stabilizing H adsorbed to single Co atoms. The catalytic performance of the CoP2 NCs is further demonstrated in a metal–insulator–semiconductor photoelectrochemical device consisting of bottom p‐Si light absorber, atomic layer deposition Al–ZnO passivation layers, and the CoP2 cocatalyst. The p‐Si/AZO/TiO2/CoP2 photocathode shows a photocurrent density of ?16.7 mA cm?2 at 0 V versus reversible hydrogen electrode (RHE) and an output photovoltage of 0.54 V. The high performance and stability are attributed to the junction between p‐Si and AZO, the corrosion‐resistance of the pinhole‐free TiO2 protective layer, and the fast HER kinetics of the CoP2 NCs.  相似文献   

3.
Herein, the authors demonstrate a heterostructured NiFe LDH‐NS@DG10 hybrid catalyst by coupling of exfoliated Ni–Fe layered double hydroxide (LDH) nanosheet (NS) and defective graphene (DG). The catalyst has exhibited extremely high electrocatalytic activity for oxygen evolution reaction (OER) in an alkaline solution with an overpotential of 0.21 V at a current density of 10 mA cm?2, which is comparable to the current record (≈0.20 V in Fe–Co–Ni metal‐oxide‐film system) and superior to all other non‐noble metal catalysts. Also, it possesses outstanding kinetics (Tafel slope of 52 mV dec?1) for the reaction. Interestingly, the NiFe LDH‐NS@DG10 hybrid has also exhibited the high hydrogen evolution reaction (HER) performance in an alkaline solution (with an overpotential of 115 mV by 2 mg cm?2 loading at a current density of 20 mA cm?2) in contrast to barely HER activity for NiFe LDH‐NS itself. As a result, the bifunctional catalyst the authors developed can achieve a current density of 20 mA cm?2 by a voltage of only 1.5 V, which is also a record for the overall water splitting. Density functional theory calculation reveals that the synergetic effects of highly exposed 3d transition metal atoms and carbon defects are essential for the bifunctional activity for OER and HER.  相似文献   

4.
Developing cheap, abundant, and easily available electrocatalysts to drive the hydrogen evolution reaction (HER) at small overpotentials is an urgent demand of hydrogen production from water splitting. Molybdenum disulfide (MoS2) based composites have emerged as competitive electrocatalysts for HER in recent years. Herein, nickel@nitrogen‐doped carbon@MoS2 nanosheets (Ni@NC@MoS2) hybrid sub‐microspheres are presented as HER catalyst. MoS2 nanosheets with expanded interlayer spacings are vertically grown on nickel@nitrogen‐doped carbon (Ni@NC) substrate to form Ni@NC@MoS2 hierarchical sub‐microspheres by a simple hydrothermal process. The formed Ni@NC@MoS2 composites display excellent electrocatalytic activity for HER with an onset overpotential of 18 mV, a low overpotential of 82 mV at 10 mA cm?2, a small Tafel slope of 47.5 mV dec?1, and high durability in 0.5 H2SO4 solution. The outstanding HER performance of the Ni@NC@MoS2 catalyst can be ascribed to the synergistic effect of dense catalytic sites on MoS2 nanosheets with exposed edges and expanded interlayer spacings, and the rapid electron transfer from Ni@NC substrate to MoS2 nanosheets. The excellent Ni@NC@MoS2 electrocatalyst promises potential application in practical hydrogen production, and the strategy reported here can also be extended to grow MoS2 on other nitrogen‐doped carbon encapsulated metal species for various applications.  相似文献   

5.
Herein, the facile preparation of ultrathin (≈3.8 nm in thickness) 2D cobalt phosphate (CoPi) nanoflakes through an oil‐phase method is reported. The obtained nanoflakes are composed of highly ordered mesoporous (≈3.74 nm in diameter) structure and exhibit an amorphous nature. Attractively, when doped with nickel, such 2D mesoporous Ni‐doped CoPi nanoflakes display decent electrocatalytic performances in terms of intrinsic activity, and low kinetic barrier toward the oxygen evolution reaction (OER). Particularly, the optimized 10 at% Ni‐doped CoPi nanoflakes (denoted as Ni10‐CoPi) deliver a low overpotential at 10 mA cm?2 (320 mV), small Tafel slope (44.5 mV dec?1), and high stability for OER in 1.0 m KOH solution, which is comparable to the state‐of‐the‐art RuO2 tested in the same condition (overpotential: 327 mV at 10 mA cm?2, Tafel slope: 73.7 mV dec?1). The robust framework coupled with good OER performance enables the 2D mesoporous Ni10‐CoPi nanoflakes to be a promising material for energy conversion applications.  相似文献   

6.
Developing earth‐abundant electrocatalysts for high‐efficiency hydrogen evolution reaction (HER) has become one of the leading research frontiers in energy conversion. Here, the design and in situ growth of Ag nanodots decorated Cu2O porous nanobelts networks on Cu foam (denoted as Ag@Cu2O/CF) are carried out via a simple one‐pot solution strategy at room temperature. Serving as self‐supporting electrocatalysts, Ag@Cu2O porous nanobelts provide plentiful active sites, and the 3D hybrid foams provide fast transportation for electrolyte and short diffusion path for newly formed H2 bubbles, which result in excellent electrocatalytic HER activity and long‐term stability. Owing to the synergistic effect between Ag nanodots and Cu2O porous nanobelts and CF, the hybrid electrocatalyst exhibits a low Tafel slope of 58 mV dec?1, a small overpotential of 108 mV at 10 mA cm?2, and high durability for more than 20 h at a potential of 200 mV for HER in 1.0 mol L?1 KOH solution.  相似文献   

7.
Hydrogen evolution reaction (HER) from water electrolysis is an attractive technique developed in recent years for cost‐effective clean energy. Although considerable efforts have been paid to create efficient catalysts for HER, the development of an affordable HER catalyst with superior performance under mild conditions is still highly desired. In this work, metal–organic frameworks (MOFs)‐templated strategy is proposed for in situ coupling of cobalt phosphide (CoP) polyhedrons nanoparticles and carbon nanotubes (CNTs). Due to the synergistic catalytic effect between CoP polyhedrons and CNTs, the as‐prepared CoP–CNTs hybrids show excellent HER performance. The resultant CoP–CNTs demonstrate excellent HER activity in 0.5 m H2SO4 with Tafel slope of 52 mV dec?1, small onset overpotential of ≈64 mV, and a low overpotential of ≈139 mV at 10 mA cm?2. Additionally, the catalyst also manifests superior durability in acid media. Considering the structure diversity of MOFs, the strategy presented here can be extended for synthesizing other well‐defined metal phosphides–CNTs hybrids, which may be used in the fields of catalysis, energy conversion and storage.  相似文献   

8.
Exploring effective electrocatalysts is a crucial requirement for boosting the efficiency of water splitting to obtain clean fuels. Here, a self‐templating strategy is reported to synthesize Ni–Fe mixed diselenide cubic nanocages for the electrocatalytic oxygen evolution reaction (OER). The diselenide nanocages are derived from corresponding Prussian‐blue analog nanocages, which are first obtained by treating the nanocube precursor with a site‐selective ammonia etchant. The resulting Ni–Fe mixed diselenide nanocages perform as a superior OER electrocatalyst, which affords a current density of 10 mA cm?2 at a small overpotential of 240 mV; a high current density, mass activity, and turnover frequency of 100 mA cm?2, 1000 A g?1, and 0.58 s?1, respectively, at the overpotential of 270 mV; a Tafel slope as small as 24 mV dec?1; and excellent stability in alkaline medium.  相似文献   

9.
Inspired by the excellent activity of platinum in hydrogen evolution reaction (HER) and the good performance of Ni-based compounds in oxygen evolution reaction (OER), a bifunctional electrocatalyst PtNi carbon nanofiber (CNF) is designed and fabricated using electrospinning followed by carbonization. Ultra-small PtNi nanoparticles of several nanometers in size are densely dispersed on every CNF, along with a few larger nanoparticles with sizes of several decades of nanometers. The as-prepared catalysts can be directly used as an electrode and act as high-efficiency materials for water splitting, including HER and OER. For HER activity, the PtNi/CNFs reach 10 mA cm?2 current density at low overpotentials of 34 mV and exhibit a small Tafel slope of 31 mV dec?1 in acidic electrolytes of 0.5 M H2SO4, which is close to that of commercial Pt/C (20 wt%) electrocatalytic catalysts. In 1 M KOH solution, the PtNi/CNFs also exhibit excellent HER activity with a low overpotential of 82 mV to achieve a current density of 10 mA cm?2 and a small Tafel slope of 34 mV dec?1. Moreover, the PtNi/CNFs also show good activity for OER in alkaline electrolyte of 1 M KOH with a Tafel slope of 159 mV dec?1 and a small overpotential of 151 mV to reach a current density of 10 mA cm?2. In addition, the OER performance of the PtNi/CNFs in acid media is also favorable, with a 198 mV dec?1 Tafel slope. The decent activity of the PtNi/CNFs for water splitting originates from the synergistic effects of using Pt and Ni, large amounts of ultra-small nanoparticles densely dispersed on the CNFs, high conductivity of the support materials and interconnected three-dimensional structures of the carbon nanofiber mats.  相似文献   

10.
An outstanding hydrogen evolution electrocatalyst should have a free energy of adsorbed atomic hydrogen of approximately zero, which enables not only a fast proton/electron‐transfer step but also rapid hydrogen release. An economic and industrially viable alternative approach for the optimization of atomic hydrogen binding energy is urgently needed. Herein, guided by density functional theory (DFT) calculations, it is theoretically demonstrated that oxygen doping in NiCoP can indeed optimize the atomic hydrogen binding energy (e.g., |ΔGH*| = 0.08, 0.12 eV on Co, P sites). To confirm this, NiCoP electrodes with controllable oxygen doping are designed and fabricated via alteration of the reducing atmosphere. Accordingly, an optimal oxygen‐doped NiCoP (≈0.98% oxygen) nanowire array is found to exhibit the remarkably low hydrogen evolution reaction (HER) overpotential of 44 mV to drive 10 mA cm?2 and a small Tafel slope of 38.6 mV dec?1, and long‐term stability of 30 h in an alkaline medium. In neutral solution, only a 51 mV overpotential (@10 mA cm?2) is required, and the Tafel slope is 79.2 mV dec?1. Meanwhile, in situ Raman spectra confirm the low formation overpotential (?30 mV) of NiCo‐phosphate at the surface of ≈0.98% oxygen‐doped NiCoP, which enables the material to show better HER performance.  相似文献   

11.
With excellent performance in the hydrogen evolution reaction (HER), molybdenum disulfide (MoS2) is considered a promising nonprecious candidate to substitute Pt‐based catalysts. Herein, pulsed laser irradiation in liquid is used to realize one‐step exfoliation of bulk 2H‐MoS2 to ultrastable few‐layer MoS2 nanosheets. Such prepared MoS2 nanosheets are rich in S vacancies and metallic 1T phase, which significantly contribute to the boosted catalytic HER activity. Protic solvents play a pivotal role in the production of S vacancies and 2H‐to‐1T phase transition under laser irradiation. MoS2 exfoliated in an optimal solvent of formic acid exhibits outstanding HER activity with an overpotential of 180 mV at 10 mA cm?2 and Tafel slope of 54 mV dec?1.  相似文献   

12.
A simple one‐pot solvothermal method is reported to synthesize VS2 nanosheets featuring rich defects and an expanded (001) interlayer spacing as large as 1.00 nm, which is a ≈74% expansion as relative to that (0.575 nm) of the pristine counterpart. The interlayer‐expanded VS2 nanosheets show extraordinary kinetic metrics for electrocatalytic hydrogen evolution reaction (HER), exhibiting a low overpotential of 43 mV at a geometric current density of 10 mA cm?2, a small Tafel slope of 36 mV dec?1, and long‐term stability of 60 h without any current fading. The performance is much better than that of the pristine VS2 with a normal interlayer spacing, and even comparable to that of the commercial Pt/C electrocatalyst. The outstanding electrocatalytic activity is attributed to the expanded interlayer distance and the generated rich defects. Increased numbers of exposed active sites and modified electronic structures are achieved, resulting in an optimal free energy of hydrogen adsorption (?GH) from density functional theory calculations. This work opens up a new door for developing transition‐metal dichalcogenide nanosheets as high active HER electrocatalysts by interlayer and defect engineering.  相似文献   

13.
Using the MoS2‐WTe2 heterostructure as a model system combined with electrochemical microreactors and density function theory calculations, it is shown that heterostructured contacts enhance the hydrogen evolution reaction (HER) activity of monolayer MoS2. Two possible mechanisms are suggested to explain this enhancement: efficient charge injection through large‐area heterojunctions between MoS2 and WTe2 and effective screening of mirror charges due to the semimetallic nature of WTe2. The dielectric screening effect is proven minor, probed by measuring the HER activity of monolayer MoS2 on various support substrates with dielectric constants ranging from 4 to 300. Thus, the enhanced HER is attributed to the increased charge injection into MoS2 through large‐area heterojunctions. Based on this understanding, a MoS2/WTe2 hybrid catalyst is fabricated with an HER overpotential of ?140 mV at 10 mA cm?2, a Tafel slope of 40 mV dec?1, and long stability. These results demonstrate the importance of interfacial design in transition metal dichalcogenide HER catalysts. The microreactor platform presents an unambiguous approach to probe interfacial effects in various electrocatalytic reactions.  相似文献   

14.
Although transition metal dichalcogenide MoSe2 is recognized as one of the low‐cost and efficient electrocatalysts for the hydrogen evolution reaction (HER), its thermodynamically stable basal plane and semiconducting property still hamper the electrocatalytic activity. Here, it is demonstrated that the basal plane and edges of 2H‐MoSe2 toward HER can be activated by introducing dual‐native vacancy. The first‐principle calculations indicate that both the Se and Mo vacancies together activate the electrocatalytic sites in the basal plane and edges of MoSe2 with the optimal hydrogen adsorption free energy (ΔGH*) of 0 eV. Experimentally, 2D MoSe2 nanosheet arrays with a large amount of dual‐native vacancies are fabricated as a catalytic working electrode, which possesses an overpotential of 126 mV at a current density of 100 mV cm?2, a Tafel slope of 38 mV dec?1, and an excellent long‐term durability. The findings pave a rational pathway to trigger the activity of inert MoSe2 toward HER and also can be extended to other layered dichalcogenide.  相似文献   

15.
MoSe2 is a promising earth‐abundant electrocatalyst for the hydrogen‐evolution reaction (HER), even though it has received much less attention among the layered dichalcogenide (MX2) materials than MoS2 so far. Here, a novel hydrothermal‐synthesis strategy is presented to achieve simultaneous and synergistic modulation of crystal phase and disorder in partially crystallized 1T‐MoSe2 nanosheets to dramatically enhance their HER catalytic activity. Careful structural characterization and defect characterization using positron annihilation lifetime spectroscopy correlated with electrochemical measurements show that the formation of the 1T phase under a large excess of the NaBH4 reductant during synthesis can effectively improve the intrinsic activity and conductivity, and the disordered structure from a lower reaction temperature can provide abundant unsaturated defects as active sites. Such synergistic effects lead to superior HER catalytic activity with an overpotential of 152 mV versus reversible hydrogen electrode (RHE) for the electrocatalytic current density of j = ?10 mA cm?2, and a Tafel slope of 52 mV dec?1. This work paves a new pathway for improving the catalytic activity of MoSe2 and generally MX2‐based electrocatalysts via a synergistic modulation strategy.  相似文献   

16.
Developing cost‐effective electrocatalysts with high activity and stability for hydrogen evolution reaction (HER) plays an important role in modern hydrogen economy. Amorphous molybdenum sulfide (MoSx ) has recently emerged as one of the most promising alternatives to Pt‐based catalysts in HER, especially in acidic electrolytes. Here this study reports a simple ultrasonic spray pyrolysis method to synthesize hybrid HER catalysts composed of MoSx firmly attached on entangled carbon nanotube nanospheres (MoSx /CNTs). This synthetic process is fast, continuous, highly durable, and amenable to high‐volume production with high yields and exceptional quality. The MoSx /CNTs hybrid catalyst prepared at 300 °C exhibits a low overpotential of 168 mV at the current density of 10 mA cm?2 with a small Tafel slope of 36 mV dec?1. Electrochemical measurements and X‐ray photoelectron spectroscopy analyses reveal that the CNT network not only promotes the charge transfer in corresponding HER process but also enhances the stability of the active sites in MoSx . This work demonstrates that ultrasonic spray pyrolysis is a reliable and versatile approach for synthesizing amorphous MoSx‐based HER catalysts.  相似文献   

17.
Here, a facile and novel strategy for the preparation of Cu‐doped RuO2 hollow porous polyhedra composed of ultrasmall nanocrystals through one‐step annealing of a Ru‐exchanged Cu‐BTC derivative is reported. Owing to the optimized surface configuration and altered electronic structure, the prepared catalyst displays a remarkable oxygen evolution reaction (OER) performance with low overpotential of 188 mV at 10 mA cm?2 in acidic electrolyte, an ultralow Tafel slope of 43.96 mV dec?1, and excellent stability in durability testing for 10 000 cycles, and continuous testing of 8 h at a current density of 10 mA cm?2. Density functional theory calculations reveal that the highly unsaturated Ru sites on the high‐index facets can be oxidized gradually and reduce the energy barrier of rate‐determining steps. On the other hand, the Cu dopants can alter the electronic structures so as to further improve the intrinsic OER activity.  相似文献   

18.
The electrocatalytic oxygen evolution reaction (OER) is a highly important reaction that requires a relatively high overpotential and determines the rate of water splitting—a process for producing hydrogen. The overall OER performance is often largely limited by uncontrollable interface when active catalysts are loaded on conductive supports, for which polymer binders are widely used, but inevitably block species transportation channels. Here, a scalable fabrication approach to freestanding graphitized carbon nanofiber networks is reported, which provides abundant sites for in situ growing Fe/Ni catalysts with the improved interface. The fabricated hybrid membrane exhibits high activity and durability toward OER, with an overpotential of 280 mV at a geometrical current density of 10 mA cm?2 and a Tafel slope of 30 mV dec?1 in alkaline medium. As implemented as a freestanding electrode, the 3D hybrid structure achieves further enhanced OER performance with an overpotential down to 215 mV at 10 mA cm?2. This work provides fresh insights into rationally fabricating OER electrocatalysts from the angle of electrode design.  相似文献   

19.
The development of earth‐abundant, low cost, and versatile electrocatalysts for producing hydrogen from water electrolysis is still challenging. Herein, based on high hydrogen evolution reaction (HER) activity of transition metal phosphides, a CoP3 nanowire decorated with copper phosphides (denoted as CuPx) nanodots structures synthesized through a simple and easily scalable precursor‐transformation strategy is reported as a highly efficient HER catalyst. By decorating with CuPx nanodots, the optimized CoP3 nanowires electrode exhibits excellent catalytic activity and long‐term durability for HER in alkaline conditions, achieving a low overpotential of 49.5 mV at a geometrical catalytic current density of 10 mA cm?2 with a small Tafel slope of 58.0 mV dec?1, while also performing quite well in neutral and acidic media. Moreover, its overall performance exceeds most of the reported state‐of‐the‐art catalysts, especially under high current density of 100 mA cm?2, demonstrating its potential as a promising versatile pH universal electrocatalyst for efficient water electrolysis. These results indicate that the incorporation of earth‐abundant stable element copper can significantly enhance catalytic activity, which widens the application range of copper and provides a new path for design and selection of HER catalysts.  相似文献   

20.
Overall water splitting driven by a low voltage is crucial for practical H2 evolution, but it is challenging. Herein, anion‐modulation of 3D Ni–V‐based transition metal interstitial compound (TMIC) heterojunctions supported on nickel foam (Ni3N‐VN/NF and Ni2P‐VP2/NF) as coupled hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalysts for efficient overall water splitting is demonstrated. The heterointerface in Ni3N‐VN has a suitable H* absorption energy, being favorable for enhancing HER activity with onset overpotential (ηonset) of zero and Tafel slope of 37 mV dec?1 in 1 m KOH (close to that of Pt/C/NF). For the OER, the synergy of Ni2P‐VP2 with oxide species can give enhanced activity with ηonset of 220 mV and Tafel slope of 49 mV dec?1. The good activity is ascribed to heterointerface for activating the intermediates, good conductivity of TMICs for electron‐transfer, and porous structure facilitation of mass‐transport. Additionally, the minimal mutual influence of Ni3N‐VN/NF and Ni2P‐VP2/NF allows easy coupling for efficient overall water splitting with a low driving voltage (≥1.43 V), a voltage of 1.51 V at 10 mA cm?2, and remarkable durability for 100 h. It can be driven by a solar cell (1.5 V), indicating its potential to store intermittent energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号