首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thin‐film directed self‐assembly of molecular building blocks into oriented nanostructure arrays enables next‐generation lithography at the sub‐5 nm scale. Currently, the fabrication of inorganic arrays from molecular building blocks is restricted by the limited long‐range order and orientation of the materials, as well as suitable methodologies for creating lithographic templates at sub‐5 nm dimensions. In recent years, higher‐order liquid crystals have emerged as functional thin films for organic electronics, nanoporous membranes, and templated synthesis, which provide opportunities for their use as lithographic templates. By choosing examples from these fields, recent progress toward the design of molecular building blocks is highlighted, with an emphasis on liquid crystals, to access sub‐5 nm features, their directed self‐assembly into oriented thin films, and, importantly, the fabrication of inorganic arrays. Finally, future challenges regarding sub‐5 nm patterning with liquid crystals are discussed.  相似文献   

2.
The development of a new nanolithographic strategy, named scanning nanowelding lithography (SNWL), for the one‐step fabrication of arbitrary high‐aspect‐ratio nanostructures of metal is reported in this study. Different from conventional pattern transfer and additive printing strategies which require subtraction or addition of materials, SNWL makes use of a sharp scanning tip to reshape metal thin films or existing nanostructures into desirable high‐aspect‐ratio patterns, through a cold‐welding effect of metal at the nanoscale. As a consequence, SNWL can easily fabricate, in one step and at ambient conditions, sub‐50 nm metal nanowalls with remarkable aspect ratio >5, which are found to be strong waveguide of light. More importantly, SNWL outweighs the existing strategies in terms of the unique ability to erase the as‐made nanostructures and rewrite them into other shapes and orientations on‐demand. Taking advantages of the serial and rewriting capabilities of SNWL, the smart information storage–erasure of Morse codes is demonstrated. SNWL is a promising method to construct arbitrary high‐aspect‐ratio nanostructure arrays that are highly desirable for biological, medical, optical, electronic, and information applications.  相似文献   

3.
The self‐assembly of block copolymers in thin films provides an attractive approach to patterning 5–100 nm structures. Cross‐linking and photopatterning of the self‐assembled block copolymer morphologies provide further opportunities to structure such materials for lithographic applications, and to also enhance the thermal, chemical, or mechanical stability of such nanostructures to achieve robust templates for subsequent fabrication processes. Here, model lamellar‐forming diblock copolymers of polystyrene and poly(methyl methacrylate) with an epoxide functionality are synthesized by atom transfer radical polymerization. We demonstrate that self‐assembly and cross‐linking of the reactive block copolymer materials in thin films can be decoupled into distinct, controlled process steps using solvent annealing and thermal treatment/ultraviolet exposure, respectively. Conventional optical lithography approaches can also be applied to the cross‐linkable block copolymer materials in thin films and enable simultaneous structure formation across scales—micrometer scale patterns achieved by photolithography and nanostructures via self‐assembly of the block copolymer. Such materials and processes are thus shown to be capable of self‐assembling distinct block copolymers (e.g., lamellae of significantly different periodicity) in adjacent regions of a continuous thin film.  相似文献   

4.
Colloidal particles can assemble into ordered crystals, creating periodically structured materials at the nanoscale without relying on expensive equipment. The combination of small size and high order leads to strong interaction with visible light, which induces macroscopic, iridescent structural coloration. To increase the complexity and functionality, it is important to control the organization of such materials in hierarchical structures with high degrees of order spanning multiple length scales. Here, a bottom‐up assembly of polystyrene particles in the presence of a silica sol–gel precursor material (tetraethylorthosilicate, TEOS), which creates crack‐free inverse opal films with high positional order and uniform crystal alignment along the (110) crystal plane, is combined with top‐down microfabrication techniques. Micrometer scale hierarchical superstructures having a highly regular internal nanostructure with precisely controlled crystal orientation and wall profiles are produced. The ability to combine structural order at the nano‐ and microscale enables the fabrication of materials with complex optical properties resulting from light–matter interactions at different length scales. As an example, a hierarchical diffraction grating, which combines Bragg reflection arising from the nanoscale periodicity of the inverse opal crystal with grating diffraction resulting from a micrometer scale periodicity, is demonstrated.  相似文献   

5.
Thin film dewetting can be efficiently exploited for the implementation of functionalized surfaces over very large scales. Although the formation of sub‐micrometer sized crystals via solid‐state dewetting represents a viable method for the fabrication of quantum dots and optical meta‐surfaces, there are several limitations related to the intrinsic features of dewetting in a crystalline medium. Disordered spatial organization, size, and shape fluctuations are relevant issues not properly addressed so far. This study reports on the deterministic nucleation and precise positioning of Si‐ and SiGe‐based nanocrystals by templated solid‐state dewetting of thin silicon films. The dewetting dynamics is guided by pattern size and shape taking full control over number, size, shape, and relative position of the particles (islands dimensions and relative distances are in the hundreds nm range and fluctuate ≈11% for the volumes and ≈5% for the positioning).  相似文献   

6.
Block copolymers (BCP) can self‐assemble into nanoscale patterns with a wide variety of applications in the semiconductor industry. The self‐assembly of BCPs is commonly accomplished by solvent vapor or thermal annealing, but generally these methods require long time (few hours) to obtain nanostructured thin films. In this contribution, a new and ultrafast method (using microwaves) is proposed—high temperature solvent vapor annealing (HTSVA), combining solvent vapor annealing with thermal annealing, to achieve fast and controllable self‐assembly of amphiphilic BCP thin films. A promising carbohydrate‐based BCP capable of forming cylindrical patterns with some of the smallest feature sizes is used for demonstrating how to obtain a highly ordered vertical cylindrical pattern with sub‐10 nm feature sizes in few seconds by HTSVA. HTSVA provides not only a simple way to achieve BCP fast self‐assembly in practical applications but also a tool to study the self‐assembly behavior of BCPs under extreme conditions.  相似文献   

7.
Orientation control of ordered materials would not only produce new physical phenomenon but also facilitate the development of fancy devices. Discotic liquid crystals (DLCs) form 1D charge transport pathway by self‐organizing into columnar nanostructures via π–π stacking. However, controlling the electrical properties in such nanostructures with some direct and instant way is a formidable task for their high viscosity and insensitivity to external stimuli. Herein, the arbitrary control over electrical conductivity of such columnar nanostructures is achieved with UV light by incorporating DLCs with molecular motors. Highly ordered DLC microstripe arrays are generated on desired substrate through a capillary bridge dewetting strategy. The conductivity of the microstripes could be continuously modulated by 365 nm light due to the influence of molecular motion under UV irradiation on the electron orbital overlap of columnar nanostructures. This is so because the disorder degree of the DLC molecules is associated with the intensity of UV light and the doping concentration of molecular motors. Moreover, the device shows memory effect and reversible conductivity change. The DLC microstripe arrays are very promising for the applications in UV detectors, memory devices, optical switches, and so on.  相似文献   

8.
Atomically thin single crystals, without grain boundaries and associated defect clusters, represent ideal systems to study and understand intrinsic defects in materials, but probing them collectively over large area remains nontrivial. In this study, the authors probe nanoscale mass transport across large‐area (≈0.2 cm2) single‐crystalline graphene membranes. A novel, polymer‐free picture frame assisted technique, coupled with a stress‐inducing nickel layer is used to transfer single crystalline graphene grown on silicon carbide substrates to flexible polycarbonate track etched supports with well‐defined cylindrical ≈200 nm pores. Diffusion‐driven flow shows selective transport of ≈0.66 nm hydrated K+ and Cl? ions over ≈1 nm sized small molecules, indicating the presence of selective sub‐nanometer to nanometer sized defects. This work presents a framework to test the barrier properties and intrinsic quality of atomically thin materials at the sub‐nanometer to nanometer scale over technologically relevant large areas, and suggests the potential use of intrinsic defects in atomically thin materials for molecular separations or desalting.  相似文献   

9.
Dip‐pen nanolithography (DPN) is used to precisely position core/thick‐shell (“giant”) quantum dots (gQDs; ≥10 nm in diameter) exclusively on top of silicon nanodisk antennas (≈500 nm diameter pillars with a height of ≈200 nm), resulting in periodic arrays of hybrid nanostructures and demonstrating a facile integration strategy toward next‐generation quantum light sources. A three‐step reading‐inking‐writing approach is employed, where atomic force microscopy (AFM) images of the pre‐patterned substrate topography are used as maps to direct accurate placement of nanocrystals. The DPN “ink” comprises gQDs suspended in a non‐aqueous carrier solvent, o‐dichlorobenzene. Systematic analyses of factors influencing deposition rate for this non‐conventional DPN ink are described for flat substrates and used to establish the conditions required to achieve small (sub‐500 nm) feature sizes, namely: dwell time, ink‐substrate contact angle and ink volume. Finally, it is shown that the rate of solvent transport controls the feature size in which gQDs are found on the substrate, but also that the number and consistency of nanocrystals deposited depends on the stability of the gQD suspension. Overall, the results lay the groundwork for expanded use of nanocrystal liquid inks and DPN for fabrication of multi‐component nanostructures that are challenging to create using traditional lithographic techniques.  相似文献   

10.
11.
Properties arising from ordered periodic mesostructures are often obscured by small, randomly oriented domains and grain boundaries. Bulk macroscopic single crystals with mesoscale periodicity are needed to establish fundamental structure–property correlations for materials ordered at this length scale (10–100 nm). A solvent‐evaporation‐induced crystallization method providing access to large (millimeter to centimeter) single‐crystal mesostructures, specifically bicontinuous gyroids, in thick films (>100 µm) derived from block copolymers is reported. After in‐depth crystallographic characterization of single‐crystal block copolymer–preceramic nanocomposite films, the structures are converted into mesoporous ceramic monoliths, with retention of mesoscale crystallinity. When fractured, these monoliths display single‐crystal‐like cleavage along mesoscale facets. The method can prepare macroscopic bulk single crystals with other block copolymer systems, suggesting that the method is broadly applicable to block copolymer materials assembled by solvent evaporation. It is expected that such bulk single crystals will enable fundamental understanding and control of emergent mesostructure‐based properties in block‐copolymer‐directed metal, semiconductor, and superconductor materials.  相似文献   

12.
One of the fundamental challenges encountered in successful incorporation of directed self‐assembly in sub‐10 nm scale practical nanolithography is the process compatibility of block copolymers with a high Flory–Huggins interaction parameter (χ). Herein, reliable, fab‐compatible, and ultrafast directed self‐assembly of high‐χ block copolymers is achieved with intense flash light. The instantaneous heating/quenching process over an extremely high temperature (over 600 °C) by flash light irradiation enables large grain growth of sub‐10 nm scale self‐assembled nanopatterns without thermal degradation or dewetting in a millisecond time scale. A rapid self‐assembly mechanism for a highly ordered morphology is identified based on the kinetics and thermodynamics of the block copolymers with strong segregation. Furthermore, this novel self‐assembly mechanism is combined with graphoepitaxy to demonstrate the feasibility of ultrafast directed self‐assembly of sub‐10 nm nanopatterns over a large area. A chemically modified graphene film is used as a flexible and conformal light‐absorbing layer. Subsequently, transparent and mechanically flexible nanolithography with a millisecond photothermal process is achieved leading the way for roll‐to‐roll processability.  相似文献   

13.
The directed self‐assembly of diblock copolymer chains (poly(1,1‐dimethyl silacyclobutane)‐block‐polystyrene, PDMSB‐b‐PS) into a thin film double gyroid structure is described. A decrease of the kinetics of a typical double‐wave pattern formation is reported within the 3D‐nanostructure when the film thickness on mesas is lower than the gyroid unit cell. However, optimization of the solvent‐vapor annealing process results in very large grains (over 10 µm²) with specific orientation (i.e., parallel to the air substrate) and direction (i.e., along the groove direction) of the characteristic (211) plane, demonstrated by templating sub‐100‐nm‐thick PDMSB‐b‐PS films.  相似文献   

14.
Understanding and mimicking the hierarchical structure of mineralized tissue is a challenge in the field of biomineralization and is important for the development of scaffolds to guide bone regeneration. Bone is a remarkable tissue with an organic matrix comprised of aligned collagen bundles embedded with nanometer-sized inorganic hydroxyapatite (HAP) crystals that exhibit orientation on the macroscale. Hybrid organic-inorganic structures mimic the composition of mineralized tissue for functional bone scaffolds, but the relationship between morphology of the organic matrix and orientation of mineral is poorly understood. Herein the mineralization of supramolecular peptide amphiphile templates, that are designed to vary in nanoscale morphology by altering the amino acid sequence, is reported. It is found that 1D cylindrical nanostructures direct the growth of oriented HAP crystals, while flatter nanostructures fail to guide the orientation found in biological systems. The geometric constraints associated with the morphology of the nanostructures may effectively control HAP nucleation and growth. Additionally, the mineralization of macroscopically aligned bundles of the nanoscale assemblies to create hierarchically ordered scaffolds is explored. Again, it is found that only aligned gel templates of cylindrical nanostructures lead to hierarchical control over hydroxyapatite orientation across multiple length scales as found in bone.  相似文献   

15.
Light‐induced phenomena occurring in nature and in synthetic materials are fascinating and have been exploited for technological applications. Here visible‐light‐induced formation of a helical superstructure is reported, i.e., a cholesteric liquid crystal phase, in orientationally ordered fluids, i.e., nematic liquid crystals, enabled by a visible‐light‐driven chiral molecular switch. The cyclic‐azobenzene‐based chiral molecular switch exhibits reversible photoisomerization in response to visible light of different wavelengths due to the band separation of n–π* transitions of its trans‐ and cis‐isomers. Green light (530 nm) drives the trans‐to‐cis photoisomerization whereas the cis‐to‐trans isomerization process of the chiral molecular switch can be caused by blue light (440 nm). It is observed that the helical twisting power of this chiral molecular switch increases upon irradiation with green light, which enables reversible induction of helical superstructure in nematic liquid crystals containing a very small quantity of the molecular switch. The occurrence of the light‐induced helical superstructure enables the formation of diffraction gratings in cholesteric films.  相似文献   

16.
A simple and inexpensive technique for the simultaneous fabrication of positive (i.e., protruding), very high aspect (>10) ratio nanostructures together with micro‐ or millistructures is developed. The method involves using residual patterns of thin‐film over‐etching (RPTO) to produce sub‐micro‐/nanoscale features. The residual thin‐film nanopattern is used as an etching mask for Si deep reactive ion etching. The etched Si structures are further reduced in size by Si thermal oxidation to produce amorphous SiO2, which is subsequently etched away by HF. Two arrays of positive Si nanowalls are demonstrated with this combined RPTO‐SiO2‐HF technique. One array has a feature size of 150 nm and an aspect ratio of 26.7 and another has a feature size of 50 nm and an aspect ratio of 15. No other parallel reduction technique can achieve such a very high aspect ratio for 50‐nm‐wide nanowalls. As a demonstration of the technique to simultaneously achieve nano‐ and milliscale features, a simple Si nanofluidic master mold with positive features with dimensions varying continuously from 1 mm to 200 nm and a highest aspect ratio of 6.75 is fabricated; the narrow 200‐nm section is 4.5 mm long. This Si master mold is then used as a mold for UV embossing. The embossed open channels are then closed by a cover with glue bonding. A high aspect ratio is necessary to produce unblocked closed channels after the cover bonding process of the nanofluidic chip. The combined method of RPTO, Si thermal oxidation, and HF etching can be used to make complex nanofluidic systems and nano‐/micro‐/millistructures for diverse applications.  相似文献   

17.
Great opportunities emerge not only in the generation of anisotropic plasmonic nanostructures but also in controlling their orientation relative to incident light. Herein, a stepwise seeded growth method is reported for the synthesis of rod‐shaped plasmon nanostructures which are vertically self‐aligned with respect to the surface of colloidal substrates. Anisotropic growth of metal nanostructure is achieved by depositing metal seeds onto the surface of colloidal substrates and then selectively passivating the seed surface to induce symmetry breaking in the subsequent seed‐mediated growth process. The versatility of this method is demonstrated by producing nanoparticle dimers and linear trimers of Au, Au–Ag, Au–Pd, and Au–Cu2O. Further, this unique method enables the automatic vertical alignment of the resulting plasmonic nanostructures to the surface of the colloidal substrate, thereby making it possible to design magnetic/plasmonic nanocomposites that allow the dynamic tuning of the plasmon excitation by controlling their orientation using an external magnetic field. The controlled anisotropic growth of colloidal plasmonic nanostructures and their dynamic modulation of plasmon excitation further allow them to be conveniently fixed in a thin polymer film with a well‐controlled orientation to display polarization‐dependent patterns that may find important applications in information encryption.  相似文献   

18.
In the specific context of condensed media, the significant and increasing recent interest in the α‐cyanostilbene (CS) motif [? Ar? CH?C(CN)? Ar? ] is relevant. These compounds have shown remarkable optical features in addition to interesting electrical properties, and hence they are recognized as very suitable and versatile options for the development of functional materials. This progress report is focused on current and future use of CS structures and molecular assemblies with the aim of exploring and developing for the next generations of functional materials. A critical selection of illustrative materials that contain the CS motif, including relevant subfamilies such as the dicyanodistyrylbenzene and 2,3,3‐triphenylacrylonitrile shows how, driven by the self‐assembly of CS blocks, a variety of properties, effects, and possibilities for practical applications can be offered to the scientific community, through different rational routes for the elaboration of advanced materials. A survey is provided on the research efforts directed toward promoting the self‐assembly of the solid state (polycrystalline solids, thin films, and single crystals), liquid crystals, nanostructures, and gels with multistimuli responsiveness, and applications for sensors, organic light‐emitting diodes, organic field effect transistors, organic lasers, solar cells, or bioimaging purposes.  相似文献   

19.
Nacre‐mimetic 2D nanofluidic materials with densely packed sub‐nanometer‐height lamellar channels find widespread applications in water‐, energy‐, and environment‐related aspects by virtue of their scalable fabrication methods and exceptional transport properties. Recently, light‐powered nanofluidic ion transport in synthetic materials gained considerable attention for its remote, noninvasive, and active control of the membrane transport property using the energy of light. Toward practical application, a critical challenge is to overcome the dependence on inhomogeneous or site‐specific light illumination. Here, asymmetric photonic‐ionic devices based on kirigami‐tailored graphene oxide paper are fabricated, and directional nanofluidic ion transport properties therein powered by full‐area light illumination are demonstrated. The in‐plane asymmetry of the graphene oxide paper is essential to the generation of photoelectric driving force under homogeneous illumination. This light‐powered ion transport phenomenon is explained based on a modified carrier diffusion model. In asymmetric nanofluidic structures, enhanced recombination of photoexcited charge carriers at the membrane boundary breaks the electric potential balance in the horizontal direction, and thus drives the ion transport in that direction under symmetric illumination. The kirigami‐based strategy provides a facile and scalable way to fabricate paper‐like photonic‐ionic devices with arbitrary shapes, working as fundamental elements for large‐scale light‐harvesting nanofluidic circuits.  相似文献   

20.
Nanolithography at low cost and high speed is made possible by using a vibrating AFM tip in tapping‐mode as a nanohammer to forge polystyrene‐block‐poly(ethylene/butylenes)‐block‐polystyrene triblock copolymer monolayer thin films after annealing to transform their microstructures from as‐cast poorly ordered cylinders into well‐ordered hexagonal spheres. Annealing is accomplished in cyclohexane vapor, a selective solvent for the majority poly(ethylene/butylenes) block. Experimental results demonstrate that such structure‐tailored thin films enable macroscopic AFM tip writing to be performed in their surface; imprinted and embossed patterns can be generated with a sub‐20‐nm line‐width resolution. In addition, it is found that the lithographic patterns generated can be erased within 5 min by thermal annealing at 70 °C, and if necessary the erasion process can be expedited by increasing the annealing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号