共查询到20条相似文献,搜索用时 15 毫秒
1.
Self‐assembly of 3D Carbon Nanotube Sponges: A Simple and Controllable Way to Build Macroscopic and Ultralight Porous Architectures 下载免费PDF全文
Shu Luo Yufeng Luo Hengcai Wu Mengya Li Lingjia Yan Kaili Jiang Liang Liu Qunqing Li Shoushan Fan Jiaping Wang 《Advanced materials (Deerfield Beach, Fla.)》2017,29(1)
2.
3.
4.
Bin Cai Vladimir Sayevich Nikolai Gaponik Alexander Eychmüller 《Advanced materials (Deerfield Beach, Fla.)》2018,30(33)
Aerogels assembled from colloidal metal or semiconductor nanocrystals (NCs) feature large surface area, ultralow density, and high porosity, thus rendering them attractive in various applications, such as catalysis, sensors, energy storage, and electronic devices. Morphological and structural modification of the aerogel backbones while maintaining the aerogel properties enables a second stage of the aerogel research, which is defined as hierarchical aerogels. Different from the conventional aerogels with nanowire‐like backbones, those hierarchical aerogels are generally comprised of at least two levels of architectures, i.e., an interconnected porous structure on the macroscale and a specially designed configuration at local backbones at the nanoscale. This combination “locks in” the inherent properties of the NCs, so that the beneficial genes obtained by nanoengineering are retained in the resulting monolithic hierarchical aerogels. Herein, groundbreaking advances in the design, synthesis, and physicochemical properties of the hierarchical aerogels are reviewed and organized in three sections: i) pure metallic hierarchical aerogels, ii) semiconductor hierarchical aerogels, and iii) metal/semiconductor hybrid hierarchical aerogels. This report aims to define and demonstrate the concept, potential, and challenges of the hierarchical aerogels, thereby providing a perspective on the further development of these materials. 相似文献
5.
Self‐Assembled Fe–N‐Doped Carbon Nanotube Aerogels with Single‐Atom Catalyst Feature as High‐Efficiency Oxygen Reduction Electrocatalysts 下载免费PDF全文
Chengzhou Zhu Shaofang Fu Junhua Song Qiurong Shi Dong Su Mark H. Engelhard Xiaolin Li Dongdong Xiao Dongsheng Li Luis Estevez Dan Du Yuehe Lin 《Small (Weinheim an der Bergstrasse, Germany)》2017,13(15)
6.
Yuanyuan Cao Lev Lewis Wadood Y. Hamad Mark J. MacLachlan 《Advanced materials (Deerfield Beach, Fla.)》2019,31(21)
Pressure‐responsive chiral photonic aerogels are fabricated by combining liquid crystal self‐assembly and ice‐templating processes. The aerogels have a hierarchical structure in which the primary 2D chiral nematic structured walls of cellulose nanocrystals form ribbons that support a secondary 3D cellular network. Owing to the flexibility of the aerogels in solvent, the 3D structure of the aerogel can easily be transformed to a 2D structure by pressure‐induced rearrangement. The aerogels vary from white in color, which arises from light scattering, to a reflective photonic crystal displaying bright iridescent colors that depend on the immersed solvent. A solvent‐sensitive ink that shows quick color response to different solvents is designed using the pressure‐responsive photonic aerogel. This material demonstrates a new response mechanism for the design of smart and mechanoresponsive photonic materials. 相似文献
7.
Hierarchical Hydrogen Bonds Directed Multi‐Functional Carbon Nanotube‐Based Supramolecular Hydrogels
Ran Du Juanxia Wu Liang Chen Huan Huang Xuetong Zhang Jin Zhang 《Small (Weinheim an der Bergstrasse, Germany)》2014,10(7):1387-1393
Supramolecular hydrogels (SMHs) are three‐dimensional networks filled with a large amount of water. The crosslinking force in the 3D network is always constructed by relatively weak and dynamic non‐covalent interactions, and thus SMHs usually possess extremely high susceptibility to external environment and can show extraordinary stimuli‐responsive, self‐healing or other attractive properties. However, the overall crosslinking force in hydrogel networks is difficult to flexibly modulate, and this leads to limited functions of the SMHs. In this regard, hierarchical hydrogen bonds, that is, the mixture of relatively strong and relatively weak hydrogen bonds, are used herein as crosslinking force for the hydrogel preparation. The ratio of strong and weak hydrogen bonds can be finely tuned to tailor the properties of resultant gels. Thus, by delicate manipulation of the overall crosslinking force in the system, a hydrogel with multiple (thermal, pH and NIR light) responsiveness, autonomous self‐healing property and interesting temperature dependent, reversible adhesion behavior is obtained. This kind of hierarchical hydrogen bond manipulation is proved to be a general method for multiple‐functionality hydrogel preparation, and the resultant material shows potential for a range of applications. 相似文献
8.
Hierarchical Vine‐Tree‐Like Carbon Nanotube Architectures: In‐Situ CVD Self‐Assembly and Their Use as Robust Scaffolds for Lithium‐Sulfur Batteries 下载免费PDF全文
Meng‐Qiang Zhao Hong‐Jie Peng Gui‐Li Tian Qiang Zhang Jia‐Qi Huang Xin‐Bing Cheng Cheng Tang Fei Wei 《Advanced materials (Deerfield Beach, Fla.)》2014,26(41):7051-7058
9.
10.
Xiaotian Zhang Shanqiu Liu Alma Salim Stefan Seeger 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(34)
Self‐cleaning materials, which are inspired and derived from natural phenomena, have gained significant scientific and commercial interest in the past decades as they are energy‐ and labor‐saving and environmentally friendly. Several technologies are developed to obtain self‐cleaning materials. The combination of superhydrophobic and photocatalytic properties enables the efficient removal of solid particles and organic contaminations, which could reduce or damage the superhydrophobicity. However, the fragility of the nanoscale roughness of the superhydrophobic surface limits its practical application. Here, a hierarchical structure approach combining micro‐ and nanoscale architectures is created to protect the nanoscale surface roughness from mechanical damage. Glass beads of 75 µm are partially embedded into a low‐density polyethylene film. This composite surface is coated with silicone nanofilaments (SNFs) via the droplet‐assisted growth and shaping approach, providing the nanoscale surface roughness as well as the support for the photocatalyst with enlarged surface area. TiO2 nanoparticles, which serve as the photocatalyst, are synthesized in situ on SNFs through a hydrothermal reaction. The self‐cleaning effect is proved using wettability measurements for various liquids, degradation of organic contamination under UV light, and antibacterial tests. The enhanced mechanical durability of the hierarchical structure of the composite material is verified with an abrasion test. 相似文献
11.
12.
13.
14.
Ultralight Multifunctional Carbon‐Based Aerogels by Combining Graphene Oxide and Bacterial Cellulose 下载免费PDF全文
Chao Li Zhen‐Yu Wu Hai‐Wei Liang Jia‐Fu Chen Shu‐Hong Yu 《Small (Weinheim an der Bergstrasse, Germany)》2017,13(25)
Nanostructured carbon aerogels with outstanding physicochemical properties have exhibited great application potentials in widespread fields and therefore attracted extensive attentions recently. It is still a challenge so far to develop flexible and economical routes to fabricate high‐performance nanocarbon aerogels, preferably based on renewable resources. Here, ultralight and multifunctional reduced graphene oxide/carbon nanofiber (RGO/CNF) aerogels are fabricated from graphene oxide and low‐cost, industrially produced bacterial cellulose by a three‐step process of freeze‐casting, freeze‐drying, and pyrolysis. The prepared RGO/CNF aerogel possesses a very low apparent density in the range of 0.7–10.2 mg cm?3 and a high porosity up to 99%, as well as a mechanically robust and electrically conductive 3D network structure, which makes it to be an excellent candidate as absorber for oil clean‐up and an ideal platform for constructing flexible and stretchable conductors. 相似文献
15.
Hierarchical 3D All‐Carbon Composite Structure Modified with N‐Doped Graphene Quantum Dots for High‐Performance Flexible Supercapacitors 下载免费PDF全文
Zhen Li Xiang Liu Liang Wang Fan Bu Junjie Wei Dengyu Pan Minghong Wu 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(39)
Flexible supercapacitors have shown enormous potential for portable electronic devices. Herein, hierarchical 3D all‐carbon electrode materials are prepared by assembling N‐doped graphene quantum dots (N‐GQDs) on carbonized MOF materials (cZIF‐8) interweaved with carbon nanotubes (CNTs) for flexible all‐solid‐state supercapacitors. In this ternary electrode, cZIF‐8 provides a large accessible surface area, CNTs act as the electrical conductive network, and N‐GQDs serve as highly pseudocapactive materials. Due to the synergistic effect and hierarchical assembly of these components, N‐GQD@cZIF‐8/CNT electrodes exhibit a high specific capacitance of 540 F g?1 at 0.5 A g?1 in a 1 m H2SO4 electrolyte and excellent cycle stability with 90.9% capacity retention over 8000 cycles. The assembled supercapacitor possesses an energy density of 18.75 Wh kg?1 with a power density of 108.7 W kg?1. Meanwhile, three supercapacitors connected in series can power light‐emitting diodes for 20 min. All‐solid‐state N‐GQD@cZIF‐8/CNT flexible supercapacitor exhibits an energy density of 14 Wh kg?1 with a power density of 89.3 W kg?1, while the capacitance retention after 5000 cycles reaches 82%. This work provides an effective way to construct novel electrode materials with high energy storage density as well as good cycling performance and power density for high‐performance energy storage devices via the rational design. 相似文献
16.
Chunxiao Lv Wenjia Xu Hongli Liu Lixue Zhang Shuai Chen Xianfeng Yang Xijin Xu Dongjiang Yang 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(23)
Carbonaceous materials are promising anodes for potassium‐ion batteries (PIBs). However, it is hard for large K ions (1.38 Å) to achieve long‐distance diffusion in pristine carbonaceous materials. In this work, the following are synthesized: S/N codoped carbon nanofiber aerogels (S/N‐CNFAs) with optimized electronic structure by S/N codoping, enhanced interlayer spacing by S doping, and a 3D interconnected porous structure of aerogel, through a pyrolysis sustainable seaweed (Fe‐alginate) aerogel strategy. Specifically, the S/N‐CNFAs electrode delivers high reversible capacities of 356 and 112 mA h g?1 at 100 and 5000 mA g?1, respectively. The capacity reaches 168 mA h g?1 at 2000 mA g?1 after 1000 cycles. A full cell with a S/N‐CNFAs anode and potassium prussian blue cathode displays a specific capacity of 198 mA h g?1 at 200 mA g?1. Density functional theory calculations indicate that S/N codoping is beneficial to synergistically improve K ions storage of S/N‐CNFAs by enhancing the adsorption of K ions and reducing the diffusion barrier of K ions. This work offers a facile heteroatom doping paradigm for designing new carbonaceous anodes for high‐performance PIBs. 相似文献
17.
Single Carbon Fibers with a Macroscopic‐Thickness, 3D Highly Porous Carbon Nanotube Coating 下载免费PDF全文
Mingchu Zou Wenqi Zhao Huaisheng Wu Hui Zhang Wenjing Xu Liusi Yang Shiting Wu Yunsong Wang Yijun Chen Lu Xu Anyuan Cao 《Advanced materials (Deerfield Beach, Fla.)》2018,30(13)
Carbon fiber (CF) grafted with a layer of carbon nanotubes (CNTs) plays an important role in composite materials and other fields; to date, the applications of CNTs@CF multiscale fibers are severely hindered by the limited amount of CNTs grafted on individual CFs and the weak interfacial binding force. Here, monolithic CNTs@CF fibers consisting of a 3D highly porous CNT sponge layer with macroscopic‐thickness (up to several millimeters), which is directly grown on a single CF, are fabricated. Mechanical tests reveal high sponge–CF interfacial strength owing to the presence of a thin transitional layer, which completely inhibits the CF slippage from the matrix upon fracture in CNTs@CF fiber–epoxy composites. The porous conductive CNTs@CF hybrid fibers also act as a template for introducing active materials (pseudopolymers and oxides), and a solid‐state fiber‐shaped supercapacitor and a fiber‐type lithium‐ion battery with high performances are demonstrated. These CNTs@CF fibers with macroscopic CNT layer thickness have many potential applications in areas such as hierarchically reinforced composites and flexible energy‐storage textiles. 相似文献
18.
19.
20.
Gonzalo Abelln Jose A. Carrasco Eugenio Coronado Juan P. Prieto‐Ruiz Helena Prima‐García 《Advanced Materials Interfaces》2014,1(6)
The synthesis of ultrathin films (UTFs) of NiFe‐LDHs has been achieved by means of an in situ hydrothermal approach, leading to a flat disposition of the LDH crystallites on the substrate, in clear contrast to the most common perpendicular orientation reported to date. Experimental factors like time of synthesis or the nature of the substrate, seem to play a crucial role during the growing process. The 2D morphology of the NiFe‐LDH crystallites was kept after a calcination procedure, leading to a topotactic transformation into mixed‐metal oxide platelets. Hereby, in order to study the catalytic behavior of our samples, a chemical vapor deposition process is explored upon the as‐synthesized films. In presence of a carbon source (ethylene), these films catalyze a preferential low‐temperature (550 °C) growth of bamboo‐like carbon nanotubes, in stark contrast to the different mixture of carbon nanoforms obtained from the bulk samples. This work opens the door for the development of UTFs based on LDHs, which may be of utmost importance in a wide range of potential applications ranging from magnetic storage, catalysis or biomedical applications, to electrochemical batteries, anti‐corrosion and superhydrophobic coatings. 相似文献