首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
    
Supramolecular hydrogels (SMHs) are three‐dimensional networks filled with a large amount of water. The crosslinking force in the 3D network is always constructed by relatively weak and dynamic non‐covalent interactions, and thus SMHs usually possess extremely high susceptibility to external environment and can show extraordinary stimuli‐responsive, self‐healing or other attractive properties. However, the overall crosslinking force in hydrogel networks is difficult to flexibly modulate, and this leads to limited functions of the SMHs. In this regard, hierarchical hydrogen bonds, that is, the mixture of relatively strong and relatively weak hydrogen bonds, are used herein as crosslinking force for the hydrogel preparation. The ratio of strong and weak hydrogen bonds can be finely tuned to tailor the properties of resultant gels. Thus, by delicate manipulation of the overall crosslinking force in the system, a hydrogel with multiple (thermal, pH and NIR light) responsiveness, autonomous self‐healing property and interesting temperature dependent, reversible adhesion behavior is obtained. This kind of hierarchical hydrogen bond manipulation is proved to be a general method for multiple‐functionality hydrogel preparation, and the resultant material shows potential for a range of applications.  相似文献   

4.
5.
6.
    
The currently limited comprehension of hierarchical control over out‐of‐equilibrium (dynamic) self‐assembly processes in nanoscience and nanotechnology has limited the exploitation of multicomponent systems in the design of new nanostructured functional materials. In this study's contribution, molecular building blocks with tailored nanoscale anisotropic supramolecular self‐assembly behavior enable the creation of mesoscale percolation networks of multiwalled carbon nanotubes through collinear interconnections at the microscale. This strategy affords polymeric composites with tunable properties at the macroscale, where the organization mechanism is regulated by dynamic self‐assembly at 4 hierarchical levels of auto‐organization. Such multilevel self‐assembly system reduces up to eightfolds the nanotube concentration required for percolation and enhances conductivity up to 6 orders of magnitude against blanks, thus yielding anisotropically semiconducting and conducting materials. The approach is based on casting‐from‐solution, thus simplifying preparative steps when compared to state‐of‐the‐art electron carrier counterparts such as single‐walled carbon nanotube‐, graphene‐, or indium‐tin‐oxide‐based technologies. Finally, promising material transparency levels can be reached across the visible and near‐infrared regimes for compositions above the percolation threshold, which provides new opportunities beyond the current spectral restrictions in commercial transparent conductors.  相似文献   

7.
8.
9.
10.
11.
  总被引:1,自引:0,他引:1  
A single-walled carbon nanotube self-suspended network of exceptionally low density is formed by DNA-streptavidin-assisted assembly where the DNA complex serves as a cross-shaped point connector. The macroscopic nanotube aerogel is conductive and luminescent and presents an excellent scaffold for subsequent functionalization. For example, platinum and titanium dioxide coating of the nanotube network is demonstrated.  相似文献   

12.
    
Responsive nanomaterials are being developed to create new unique functionalities such as switchable colors and adhesive properties or other programmable features in response to external stimuli. While many existing examples rely on changes in temperature, humidity, or pH, this study aims to explore an alternative approach relying on simple electric input signals. More specifically, 3D electrochromic architected microstructures are developed using carbon nanotube–Tin (Sn) composites that can be reconfigured by lithiating Sn with low power electric input (≈50 nanowatts). These microstructures have a continuous, regulated, and non-volatile actuation determined by the extent of the electrochemical lithiation process. In addition, this proposed fabrication process relies only on batch lithographic techniques, enabling the parallel production of thousands of 3D microstructures. Structures with a 30–97% change in open-end area upon actuation are demonstrated and the importance of geometric factors in the response and structural integrity of 3D architected microstructures during electrochemical actuation is highlighted.  相似文献   

13.
14.
15.
16.
17.
    
The synthesis of ultrathin films (UTFs) of NiFe‐LDHs has been achieved by means of an in situ hydrothermal approach, leading to a flat disposition of the LDH crystallites on the substrate, in clear contrast to the most common perpendicular orientation reported to date. Experimental factors like time of synthesis or the nature of the substrate, seem to play a crucial role during the growing process. The 2D morphology of the NiFe‐LDH crystallites was kept after a calcination procedure, leading to a topotactic transformation into mixed‐metal oxide platelets. Hereby, in order to study the catalytic behavior of our samples, a chemical vapor deposition process is explored upon the as‐synthesized films. In presence of a carbon source (ethylene), these films catalyze a preferential low‐temperature (550 °C) growth of bamboo‐like carbon nanotubes, in stark contrast to the different mixture of carbon nanoforms obtained from the bulk samples. This work opens the door for the development of UTFs based on LDHs, which may be of utmost importance in a wide range of potential applications ranging from magnetic storage, catalysis or biomedical applications, to electrochemical batteries, anti‐corrosion and superhydrophobic coatings.  相似文献   

18.
    
Highly uniform and large‐area single‐walled carbon‐nanotube (SWNT) networks are realized by the dip‐coating method, which is based on fundamental fluid‐dynamic phenomena such as capillary condensation and surface tension. The changes in the polarity and hydration properties of the substrate affect the morphology of the SWNT networks and result in nonlinear growth of the networks in the repetitive dip‐coating process. The density and the thickness of the SWNT networks are controlled by processing variables including number of dip coatings, concentration of SWNT colloidal solution, and withdrawal velocity. The networks have uniform sheet resistances and high optical transmittance in the visible wavelength range.  相似文献   

19.
20.
    
Hierarchically structured metal oxides have two or more levels of structure. Their nanometer‐sized building blocks provide a high surface area, a high surface‐to‐bulk ratio, and surface functional groups that can interact with, e.g., heavy metal ions. Their overall micrometer‐sized structure provides desirable mechanical properties, such as robustness, facile species transportation, easy recovery, and regeneration. In combination these features are suitable for the removal of heavy metal ions from water. Several general synthesis routes for the fabrication of metal oxides with various morphologies and hierarchical structures are discussed including soft and hard template‐assisted routes. These routes are general, reliable, and environmentally friendly methods to prepare transition and rare earth metal oxides, including cobalt oxide, iron oxide, and ceria. As‐prepared hierarchically structured metal oxides show excellent adsorption capacities for AsV and CrVI ions in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号