首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monometallic Ni2+‐Ni3+ layered double hydroxide (LDH) is prepared using a simple oxidative intercalation process and may be further exfoliated into positively charged Ni(OH)2 unilamellar sheets. The superior capacitive behavior of the unilamellar sheets stranded in carbon nanotubes (CNTs) networks is achieved because of the complete interfacial charge storage arising from the confined Faradaic reactions at the interfacial region. 3D nanosheet/CNT composites are prepared using an in situ electrostatic assembly of positive charged sheets with CNTs bearing negative charges. The restacking of active nanosheets during electrochemical cycling is effectively prohibited. Consequently, the outstanding specific capacitance and remarkable rate capability of the nanosheet/CNT hybrid electrodes are demonstrated, making them promising candidates for high performance supercapacitors, combining high‐energy storage densities with high levels of power delivery.  相似文献   

2.
The efficiency of splitting water into hydrogen and oxygen is highly dependent on the catalyst used. Herein, ultrathin Ni(0)-embedded Ni(OH)2 heterostructured nanosheets, referred to as Ni/Ni(OH)2 nanosheets, with superior water splitting activity are synthesized by a partial reduction strategy. This synthetic strategy confers the heterostructured Ni/Ni(OH)2 nanosheets with abundant Ni(0)-Ni(II) active interfaces for hydrogen evolution reaction (HER) and Ni(II) defects as transitional active sites for oxygen evolution reaction (OER). The obtained Ni/Ni(OH)2 nanosheets exhibit noble metal-like electrocatalytic activities toward overall water splitting in alkaline condition, to offer 10 mA cm−2 in HER and OER, the required overpotentials are only 77 and 270 mV, respectively. Based on such an outstanding activity, a water splitting electrolysis cell using the Ni/Ni(OH)2 nanosheets as the cathode and anode electrocatalysts has been successfully built. When the output voltage of the electrolytic cell is 1.59 V, a current density of 10 mA cm−2 can be obtained. Moreover, the durability of Ni/Ni(OH)2 nanosheets in the alkaline electrolyte is much better than that of noble metals. No obvious performance decay is observed after 20 h of catalysis. This facile strategy paves the way for designing highly active non-precious-metal catalyst to generate both hydrogen and oxygen by electrolyzing water at room temperature.  相似文献   

3.
Ni(OH)2晶型构造控制研究   总被引:2,自引:0,他引:2  
采用氨络合沉淀法制备了Ni(OH)2微粒。基于Ni(OH)2的结构特征,考察了阴离子、氨浓度、反应陈化时间对Ni(OH)2的结构控制规律,并用负离子配位多面体生长基元理论对此进行解释,认为通过改变反应休 理论化学条件来改变有关生长长基元及其维度、连接方式是控制粉体结构的有效途径。  相似文献   

4.
唐金红  陈实  王芳  吴锋 《功能材料》2007,38(5):696-699
对镍氢电池的镍正极覆钴改性的研究进展进行了综述,系统归纳了添加剂Co、CoO、Co(OH)2、CoOOH对电池镍正极性能的改善及覆钴工艺的研究进展,并对覆钴工艺的前景提出了新的展望.  相似文献   

5.
6.
球形氢氧化镍的微结构形成机制研究   总被引:3,自引:0,他引:3  
沈湘黔  彭美勋  景茂祥  危亚辉 《功能材料》2005,36(10):1629-1633
通过扫描电镜(SEM)和透射电镜(TEM)技术研究了在连续搅拌反应沉淀-结晶过程中生成的球形氢氧化镍的微结构形成机制.研究结果表明,在连续搅拌反应器中,小颗粒的聚集为氢氧化镍微粒生长的主要方式,聚集和重结晶过程进而影响球形氢氧化镍颗粒的表面和内部结构;宏观形貌为球形的每一个氢氧化镍微球由纳米片状氢氧化镍沿径向叠砌而成,纳米片状氢氧化镍晶粒之间相互连接形成三维网络结构;氢氧化镍微球表面结构显示由新生纳米晶氢氧化镍自组装聚集特征,同时微球内存在大量的孔隙.具备这种结构的球形氢氧化镍活性物质在Ni-MH电池的充放电过程中可能具有良好的力学稳定性及质子和电子传导性能.  相似文献   

7.
氢氧化镍/还原氧化石墨烯复合物的超级电容性能   总被引:1,自引:0,他引:1  
黄振楠  寇生中  金东东  杨杭生  张孝彬 《功能材料》2015,(5):5084-5088,5094
采用共沉淀法制备了氢氧化镍/还原氧化石墨烯复合材料,并以此为电极研究了其超级电容性能。实验发现,六方氢氧化镍纳米片被成功插入到还原氧化石墨烯的层间,这有效抑制了还原氧化石墨烯和氢氧化镍的团聚,提高了电极的稳定性。当氢氧化镍和还原氧化石墨烯的质量比为5.5∶1时,显示了最佳的电化学性能:在-0.1~0.37V的电位窗口,1A/g的电流密度下,比电容高达1 036F/g;4A/g的电流密度下快速循环3 000次后,仍然保持70%的比电容。  相似文献   

8.
Electrochemical water oxidation is the key technology in water‐splitting reactions and rechargeable metal–air batteries, which is very attractive for renewable energy conversion and storage. Replacement of precious catalysts with cost‐effective and highly active alternatives is still a great challenge. Herein, based on theoretical predictions, holey structures are designed and fabricated on the free‐standing conventional 2D OER catalyst. By well‐controlled defects engineering, uniform tiny holes are created on the free‐standing Ni(OH)2 nanosheets via a sol–gel method, with the embedded Zn components as the template for holes production. The whole preparation process is feasible and effective to make full use of the basal plane of 2D nanomaterials, which can provide higher surface area, richer defects, more grain boundaries, and edge sites, as well as greater distorted surfaces. Meanwhile, these holes developed inside the sheet structure can supply tremendous permeable channels for ions adsorption and transportation, enable a fast interfacial charge transfer and accelerate the reaction process. The as‐prepared 2D holey Ni(OH)2 nanostructures exhibit excellent catalytic performance toward electrochemical water oxidation, with lower onset overpotentials and higher current densities compared with the pristine Ni(OH)2 catalyst, suggesting the holey defects engineering is a promising strategy for efficient water‐splitting devices and rechargeable metal–air batteries.  相似文献   

9.
10.
β-Ni(OH)2纳米粉末制备方法的改进   总被引:2,自引:0,他引:2  
研究了纳米级β-Ni(OH)2粉末的制备方法,使纳米粉末的产率提高了近5倍,达到了85%,并保持纳米粉末的尺寸在50-80nm。制备的β-Ni(OH)2纳米粉末可以提高镍电极容量的10%-12%。  相似文献   

11.
12.
Ni(OH)2 nanosheet, acting as a potential active material for supercapacitors, commonly suffers from sluggish reaction kinetics and low intrinsic conductivity, which results in suboptimal energy density and long cycle life. Herein, a convenient electrochemical halogen functionalization strategy is applied for the preparation of mono/bihalogen engineered Ni(OH)2 electrode materials. The theoretical calculations and experimental results found that thanks to the extraordinarily high electronegativity, optimal reversibility, electronic conductivity, and reaction kinetics could be achieved through F functionalization  . However, benefiting from the largest ionic radius, I Ni(OH)2 contributes the best specific capacity and morphology transformation, which is a new finding that distinguishes it from previous reports in the literature. The exploration of the interaction effect of halogens (F, I Ni(OH)2, F, Br Ni(OH)2, and Cl, I Ni(OH)2) manifests that F, I Ni(OH)2 delivers a higher specific capacity of 200.6 mAh g−1 and an excellent rate capability of 58.2% due to the weaker electrostatic repulsion, abundant defect structure, and large layer spacing. Moreover, the F, I Ni(OH)2//FeOOH@NrGO device achieves a high energy density of 97.4 Wh kg−1 and an extremely high power density of 32426.7 W kg−1, as well as good cycling stability. This work develops a pioneering tactic for designing energy storage materials to meet various demands.  相似文献   

13.
Mg、Ca、Sr、Ba、Cd、Zn、Co和La等添加剂以化学共沉积的方式添加到镍电极活性物质Ni(OH)2中,XRD显示Ni(OH)2为β型。恒流充放电和循环伏安实验结果表明:添加剂能提高镍电极的充放电性能,其中Sr、Co和La是比较理想的添加剂。它们能明显提高析氧极化,降低析氧速率,增强电极的可逆性,改善电极的充放电性能。  相似文献   

14.
15.
16.
Exploiting active and stable non-precious metal electrocatalysts for alkaline hydrogen evolution reaction (HER) at large current density plays a key role in realizing large-scale industrial hydrogen generation. Herein, a self-supported microporous Ni(OH)x/Ni3S2 heterostructure electrocatalyst on nickel foam (Ni(OH)x/Ni3S2/NF) that possesses super-hydrophilic property through an electrochemical process is rationally designed and fabricated. Benefiting from the super-hydrophilic property, microporous feature, and self-supported structure, the electrocatalyst exhibits an exceptional HER performance at large current density in 1.0 M KOH, only requiring low overpotential of 126, 193, and 238 mV to reach a current density of 100, 500, and 1000 mA cm−2, respectively, and displaying a long-term durability up to 1000 h, which is among the state-of-the-art non-precious metal electrocatalysts. Combining hard X-rays absorption spectroscopy and first-principles calculation, it also reveals that the strong electronic coupling at the interface of the heterostructure facilitates the dissociation of H2O molecular, accelerating the HER kinetics in alkaline electrolyte. This work sheds a light on developing advanced non-precious metal electrocatalysts for industrial hydrogen production by means of constructing a super-hydrophilic microporous heterostructure.  相似文献   

17.
Poly(vinylpyrrolidone)‐encapsulated Bi2Se3 nanosheets with a thickness of 1.7 nm and diameter of 31.4 nm are prepared by a solution method. Possessing an extinction coefficient of 11.5 L g?1 cm?1 at 808 nm, the ultrathin Bi2Se3 nanosheets boast a high photothermal conversion efficiency of 34.6% and excellent photoacoustic performance. After systemic administration, the Bi2Se3 nanosheets with the proper size and surface properties accumulate passively in tumors enabling efficient photoacoustic imaging of the entire tumors to facilitate photothermal cancer therapy. In vivo biodistribution studies reveal that they are expelled from the body efficiently after 30 d. The ultrathin Bi2Se3 nanosheets have large clinical potential as metabolizable near‐infrared‐triggered theranostic agents.  相似文献   

18.
Recently, due to the possibility of thinning down to the atomic thickness to achieve exotic properties, layered materials have attracted extensive research attention. In particular, PbI2, a kind of layered material, and its perovskite derivatives, CH3NH3PbI3 (i.e., MAPbI3), have demonstrated impressive photoresponsivities for efficient photodetection. Herein, the synthesis of large‐scale, high‐density, and freestanding PbI2 nanosheets is demonstrated by manipulating the microenvironment during physical vapor deposition. In contrast to conventional two‐dimensional (2D) growth along the substrate surface, the essence here is the effective nucleation of microplanes with different angles relative to the in‐plane direction of underlying rough‐surfaced substrates. When configured into photodetectors, the fabricated device exhibits a photoresponsivity of 410 mA W?1, a detectivity of 3.1 × 1011 Jones, and a fast response with the rise and decay time constants of 86 and 150 ms, respectively, under a wavelength of 405 nm. These PbI2 nanosheets can also be completely converted into MAPbI3 materials via chemical vapor deposition with an improved photoresponsivity up to 40 A W?1. All these performance parameters are comparable to those of state‐of‐the‐art layered‐material‐based photodetectors, revealing the technological potency of these freestanding nanosheets for next‐generation high‐performance optoelectronics.  相似文献   

19.
Ni(OH)2水热氢还原制备超细Ni粉   总被引:13,自引:0,他引:13  
采用NiSO4加过量碱制取的Ni(OH)2水浆(pH12-13),经氢还原 ̄30min制得平均粒度20nm以下的Ni粉。碱是否过量对Ni粉粒度影响较大;催化剂和温度对反应速度也有较大影响。氢还原反应机制不是液相中的Ni离子还原,而昌Ni(OH)2固体微粒与活性氢之间的反应。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号