首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a facile strategy for the construction of single crystalline Ni3S2 nanowires coated with N‐doped carbon shell (NC) forming Ni3S2@NC core/shell arrays by one‐step chemical vapor deposition process is reported. In addition to the good electronic conductivity from the NC shell, the nanowire structure also ensures the accommodation of large volume expansion during cycling, leading to pre‐eminent high‐rate capacities (470 mAh g?1 at 0.05 A g?1 and 385 mAh g?1 at 2 A g?1) and outstanding cycling stability with a capacity retention of 91% after 100 cycles at 1 A g?1. Furthermore, ex situ transmission electron microscopy combined with X‐ray diffraction and Raman spectra are used to investigate the reaction mechanism of Ni3S2@NC during the charge/discharge process. The product after delithiation consists of Ni3S2 and sulfur, suggesting that the capacity of the electrode comes from the conversion reaction of both Ni3S2 and sulfur with Li2S.  相似文献   

2.
Although graphite materials have been applied as commercial anodes in lithium‐ion batteries (LIBs), there still remain abundant spaces in the development of carbon‐based anode materials for sodium‐ion batteries (SIBs). Herein, an electrospinning route is reported to fabricate nitrogen‐doped carbon nanofibers with interweaved nanochannels (NCNFs‐IWNC) that contain robust interconnected 1D porous channels, produced by removal of a Te nanowire template that is coelectrospun within carbon nanofibers during the electrospinning process. The NCNFs‐IWNC features favorable properties, including a conductive 1D interconnected porous structure, a large specific surface area, expanded interlayer graphite‐like spacing, enriched N‐doped defects and active sites, toward rapid access and transport of electrolyte and electron/sodium ions. Systematic electrochemical studies indicate that the NCNFs‐IWNC exhibits an impressively high rate capability, delivering a capacity of 148 mA h g?1 at current density of as high as 10 A g?1, and has an attractively stable performance over 5000 cycles. The practical application of the as‐designed NCNFs‐IWNC for a full SIBs cell is further verified by coupling the NCNFs‐IWNC anode with a FeFe(CN)6 cathode, which displays a desirable cycle performance, maintaining acapacity of 97 mA h g?1 over 100 cycles.  相似文献   

3.
Hierarchically well‐developed porous graphene nanofibers comprising N‐doped graphitic C (NGC)‐coated cobalt oxide hollow nanospheres are introduced as anodes for high‐rate Li‐ion batteries. For this, three strategies, comprising the Kirkendall effect, metal–organic frameworks, and compositing with highly conductive C, are applied to the 1D architecture. In particular, NGC layers are coated on cobalt oxide hollow nanospheres as a primary transport path of electrons followed by graphene‐nanonetwork‐constituting nanofibers as a continuous and secondary electron transport path. Superior cycling performance is achieved, as the unique nanostructure delivers a discharge capacity of 823 mAh g?1 after 500 cycles at 3.0 A g?1 with a low decay rate of 0.092% per cycle. The rate capability is also noteworthy as the structure exhibits high discharge capacities of 1035, 929, 847, 787, 747, 703, 672, 650, 625, 610, 570, 537, 475, 422, 294, and 222 mAh g?1 at current densities of 0.5, 1.5, 3, 5, 7, 10, 12, 15, 18, 20, 25, 30, 40, 50, 80, and 100 A g?1, respectively. In view of the highly efficient Li+ ion/electron diffusion and high structural stability, the present nanostructuring strategy has a huge potential in opening new frontiers for high‐rate and long‐lived stable energy storage systems.  相似文献   

4.
5.
Building a rechargeable battery with high capacity, high energy density, and long lifetime contributes to the development of novel energy storage devices in the future. Although carbon materials are very attractive anode materials for lithium‐ion batteries (LIBs), they present several deficiencies when used in sodium‐ion batteries (SIBs). The choice of an appropriate structural design and heteroatom doping are critical steps to improve the capacity and stability. Here, carbon‐based nanofibers are produced by sulfur doping and via the introduction of ultrasmall TiO2 nanoparticles into the carbon fibers (CNF‐S@TiO2). It is discovered that the introduction of TiO2 into carbon nanofibers can significantly improve the specific surface area and microporous volume for carbon materials. The TiO2 content is controlled to obtain CNF‐S@TiO2‐5 to use as the anode material for SIBs/LIBs with enhanced electrochemical performance in Na+/Li+ storage. During the charge/discharge process, the S‐doping and the incorporation of TiO2 nanoparticles into carbon fibers promote the insertion/extraction of the ions and enhance the capacity and cycle life. The capacity of CNF‐S@TiO2‐5 can be maintained at ≈300 mAh g?1 over 600 cycles at 2 A g?1 in SIBs. Moreover, the capacity retention of such devices is 94%, showing high capacity and good stability.  相似文献   

6.
7.
Carbonaceous materials have attracted immense interest as anode materials for Na‐ion batteries (NIBs) because of their good chemical, thermal stabilities, as well as high Na‐storage capacity. However, the carbonaceous materials as anodes for NIBs still suffer from the lower rate capability and poor cycle life. An N,O‐dual doped carbon (denoted as NOC) network is designed and synthesized, which is greatly favorable for sodium storage. It exhibits high specific capacity and ultralong cycling stability, delivering a capacity of 545 mAh g?1 at 100 mA g?1 after 100 cycles and retaining a capacity of 240 mAh g?1 at 2 A g?1 after 2000 cycles. The NOC composite with 3D well‐defined porosity and N,O‐dual doped induces active sites, contributing to the enhanced sodium storage. In addition, the NOC is synthesized through a facile solution process, which can be easily extended to the preparation of many other N,O‐dual doped carbonaceous materials for wide applications in catalysis, energy storage, and solar cells.  相似文献   

8.
9.
Carbonaceous materials as anodes usually exhibit low capacity for lithium ion batteries (LIBs) and sodium ion batteries (SIBs). Oxygen‐doped carbonaceous materials have the potential of high capacity and super rate performance. However, up to now, the reported oxygen‐doped carbonaceous materials usually exhibit inferior electrochemical performance. To overcome this problem, a high reactive oxygen‐doped 3D interdigital porous carbonaceous material is designed and synthesized through epitaxial growth method and used as anodes for LIBs and SIBs. It delivers high reversible capacity, super rate performance, and long cycling stability (473 mA h g?1after 500 cycles for LIBs and 223 mA h g?1 after 1200 cycles for SIBs, respectively, at the current density of 1000 mA g?1), with a capacity decay of 0.0214% per cycle for LIBs and 0.0155% per cycle for SIBs. The results demonstrate that constructing 3D interdigital porous structure with reactive oxygen functional groups can significantly enhance the electrochemical performance of oxygen‐doped carbonaceous material.  相似文献   

10.
11.
12.
13.
Rechargeable lithium‐ion batteries (LIBs), as one of the most important electrochemical energy‐storage devices, currently provide the dominant power source for a range of devices, including portable electronic devices and electric vehicles, due to their high energy and power densities. The interest in exploring new electrode materials for LIBs has been drastically increasing due to the surging demands for clean energy. However, the challenging issues essential to the development of electrode materials are their low lithium capacity, poor rate ability, and low cycling stability, which strongly limit their practical applications. Recent remarkable advances in material science and nanotechnology enable rational design of heterostructured nanomaterials with optimized composition and fine nanostructure, providing new opportunities for enhancing electrochemical performance. Here, the progress as to how to design new types of heterostructured anode materials for enhancing LIBs is reviewed, in the terms of capacity, rate ability, and cycling stability: i) carbon‐nanomaterials‐supported heterostructured anode materials; ii) conducting‐polymer‐coated electrode materials; iii) inorganic transition‐metal compounds with core@shell structures; and iv) combined strategies to novel heterostructures. By applying different strategies, nanoscale heterostructured anode materials with reduced size, large surfaces area, enhanced electronic conductivity, structural stability, and fast electron and ion transport, are explored for boosting LIBs in terms of high capacity, long cycling lifespan, and high rate durability. Finally, the challenges and perspectives of future materials design for high‐performance LIB anodes are considered. The strategies discussed here not only provide promising electrode materials for energy storage, but also offer opportunities in being extended for making a variety of novel heterostructured nanomaterials for practical renewable energy applications.  相似文献   

14.
Uniform Na2Ti3O7 hollow spheres assembled from N‐doped carbon‐coated ultrathin nanosheets are synthesized. A unique multilayer structure of nanosheets is presumed to significantly reduce energy consumption during the diffusion process of sodium ions, while the carbon‐coated structure can increase the overall conductivity. The as‐prepared sample used as an anode in sodium‐ion batteries exhibits the best rate performance ever reported for Na2Ti3O7, delivering more than 60 mAh g?1 after 1000 continuous cycles at the high rate of 50 C, which was achieved due to its unique structure.  相似文献   

15.
Solid‐electrolyte interphase (SEI) films with controllable properties are highly desirable for improving battery performance. In this paper, a combined experimental and theoretical approach is used to study SEI films formed on hard carbon in Li‐ and Na‐ion batteries. It is shown that a stable SEI layer can be designed by precycling an electrode in a desired Li‐ or Na‐based electrolyte, and that ionic transport can be kinetically controlled. Selective Li‐ and Na‐based SEI membranes are produced using Li‐ or Na‐based electrolytes, respectively. The Na‐based SEI allows easy transport of Li ions, while the Li‐based SEI shuts off Na‐ion transport. Na‐ion storage can be manipulated by tuning the SEI layer with film‐forming electrolyte additives, or by preforming an SEI layer on the electrode surface. The Na specific capacity can be controlled to < 25 mAh g?1; ≈ 1/10 of the normal capacity (250 mAh g?1). Unusual selective/preferential transport of Li ions is demonstrated by preforming an SEI layer on the electrode surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion‐selective conductors using electrochemical approaches.  相似文献   

16.
17.
18.
19.
The development of cost‐effective and flexible electrodes is demanding in the field of energy storage. Herein, flexible FexOy/nitrogen‐doped carbon films (FexOy/NC‐MOG) are prepared by facile electrospinning of Fe‐based metal–organic gels (MOGs) followed by high‐temperature carbonization. This approach allows the even mixing of fragile coordination polymers with polyacrylonitrile into flexible films while reserving the structural characteristics of coordination polymers. After thermal treatment, FexOy/NC‐MOG films possess uniformly distributed FexOy nanoparticles and larger accessible surface areas than traditional FexOy‐NC films without MOG. Taking advantage of the unique structure, FexOy/NC‐MOG exhibits a superior rate performance (449.8 mA h g?1 at 5000 mA g–1) and long cycle life (629.3 mA h g–1 after 500 cycles at 1000 mA g–1) when used as additive‐free anodes in lithium‐ion batteries.  相似文献   

20.
Layered material MoS2 is widely applied as a promising anode for lithium‐ion batteries (LIBs). Herein, a scalable and facile dopamine‐assisted hydrothermal technique for the preparation of strongly coupled MoS2 nanosheets and nitrogen‐doped graphene (MoS2/N‐G) composite is developed. In this composite, the interconnected MoS2 nanosheets are well wrapped onto the surface of graphene, forming a unique veil‐like architecture. Experimental results indicate that dopamine plays multiple roles in the synthesis: a binding agent to anchor and uniformly disperse MoS2 nanosheets, a morphology promoter, and the precursor for in situ nitrogen doping during the self‐polymerization process. Density functional theory calculations further reveal that a strong interaction exists at the interface of MoS2 nanosheets and nitrogen‐doped graphene, which facilitates the charge transfer in the hybrid system. When used as the anode for LIBs, the resulting MoS2/N‐G composite electrode exhibits much higher and more stable Li‐ion storage capacity (e.g., 1102 mAh g?1 at 100 mA g?1) than that of MoS2/G electrode without employing the dopamine linker. Significantly, it is also identified that the thin MoS2 nanosheets display outstanding high‐rate capability due to surface‐dominated pseudocapacitance contribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号