首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P.-L. Chien  S.W. Weller 《Fuel》1984,63(6):878-879
The extent of coal hydroliquefaction in the presence of a good catalyst (impregnated ammonium heptamolybdate) and a hydrogen-donor solvent (tetralin) can be substantially greater in a tubing bomb than in a stirred autoclave, under nominally identical liquefaction conditions. This difference may be associated with the typically lower gas:liquid volume ratio existing under reaction conditions in a tubing bomb, relative to the ratio in an autoclave. If equilibrium is reached in the catalysed dissociation of tetralin, the extent of dissociation is less, and the hydrogen partial pressure is substantially higher, in the tubing bomb than in the autoclave. Calculations and measurements have been made for the equilibrium conditions in tetralin dissociation when coal is absent but a good catalyst (ammonium heptamolybdate dispersed on alumina) is present. For the calculation, the molar volumes and vapour pressures of tetralin and naphthalene must be known, together with the dissociation constant. Agreement was good between calculated and experimental values of dissociation in both tubing bomb and autoclave. The results permit prediction that increasing the gas:liquid volume in a tubing bomb liquefaction experiment should decrease the conversion; this effect was observed.  相似文献   

2.
The results of conversion determinations on the products from Powhatan No.5 coal liquefied in an autoclave and in a high-pressure, high-temperature e.s.r. cavity are reported. Oil, asphaltene and preasphaltene yields, and overall conversion have been determined for Powhatan No.5 coal samples liquefied in tetralin, SRC-11 heavy distillate, and naphthalene at temperatures from 400 to 480 ° C in both reactor systems. The concept of reaction severity is introduced and used to formalize the relation between the effect of temperature and reaction time on oil yield and conversion. Oil is the predominant product in liquefaction in tetralin or naphthalene, asphaltene is the major product of liquefaction in SRC-II heavy distillate. Retrogressive reaction (THF-insoluble product formation) becomes severe when SRC-II heavy distillate is the liquefaction solvent and residence time of >10 min are used at temperatures >450 °C. Preasphaltenes appear to be the only intermediate species in Powhatan No.5 liquefaction.  相似文献   

3.
Attention focuses on the products and process of liquefaction of Baganursk and Tugrugnursk lignite (Mongolia) and Podmoskovnyi, Kansko-Achinsk, and South Yakutsk lignite (Russia), in the presence of various hydrogen donors (tetralin, mixtures of tetralin with isopropanol, the hydrocarbon semicoking fraction of Podmoskovnyi lignite).  相似文献   

4.
寇小文  顾雄毅  李平 《化工进展》2015,34(9):3279-3285
十氢萘是一种储氢密度很高的氢能载体,通过催化脱氢反应可将储存在十氢萘中的氢气释放出来。本文考察了用于制氢的十氢萘液相脱氢反应,在Pt负载的活性炭颗粒催化剂(Pt/AC)上可获得约47%的脱氢转化率;浓度分布显示十氢萘脱氢为分别生成萘及四氢萘的平行反应。在温度290~335℃、压力0.7~1.3MPa、搅拌转速1000r/min的条件下,在间歇高压釜中考察了十氢液相催化脱氢动力学,建立了脱氢反应表观动力学模型,对十氢萘脱氢实验数据进行非线性拟合,得到十氢萘脱氢表观动力学模型参数,生成萘及四氢萘的表观活化能分别为116.27kJ/mol、114.38kJ/mol。经统计检验,结果表明所建立的十氢萘催化脱氢表观动力学模型和参数估值是可靠的。  相似文献   

5.
Liddell coal (New South Wales, Australia) has been hydrogenated at 400, 425 and 450 °C with excess tetralin as vehicle and nitrogen or hydrogen as charge gas for 4 h at reaction temperature. In some experiments a nickel-molybdenum catalyst was used. The structures of the liquid and solid products were investigated by nuclear magnetic resonance spectroscopy, gel permeation chromatography and combustion analysis. Increasing the hydrogenation temperature from 400 to 450 °C decreases the yield of liquid products but increases conversion. At higher temperatures the liquid products are smaller in molecular size and molecular weight and contain a greater proportion of aromatic carbon and hydrogen; the solid residues also contain a greater proportion of aromatic carbon. The changes in variation of yield and structure with temperature are independent of the presence of catalyst under nitrogen and the nature of the charge gas. However, as the reaction system is capable of absorbing more hydrogen than can be supplied by the tetralin, the products from reactions with hydrogen as charge gas contain more hydrogen, some in hydroaromatic groups. Catalyst has little, if any, role in dissolution of the coal when a nitrogen atmosphere is used. When nitrogen is used as charge gas, reactions of coal-derived liquids with the catalyst do not alter the hydrogen, carbon or molecular size distributions in the products. The results show that the changes in composition of the liquid and solid products with increase in hydrogenation temperature are due to pyrolytic reactions and not to increased hydrogenation of aromatic rings.  相似文献   

6.
研究了锡林郭勒褐煤在超临界水和N2气氛下,以及K2CO3,FeS+S和KOH三种催化剂分别作用下的液化性能,并与其在供氢溶剂四氢萘和H2气氛下的液化性能进行比较。结果表明:锡林郭勒褐煤在供氢溶剂四氢萘和H2气氛下具有较高的液化活性,在420℃、无催化剂条件下褐煤的液化转化率和油水气收率分别为76.8%和51.0%;而在相同温度、添加5%甲酸的超临界水和N2气氛下,褐煤的液化转化率和油水气收率分别降为32.0%和29.2%,且褐煤液化主要转化为附加值高的油气部分。K2CO3,FeS+S和KOH三种催化剂对锡林郭勒褐煤在超临界水中液化都具有较好的催化活性,按催化活性由高到低排序为K2CO3,FeS+S,KOH;420℃时K2CO3对锡林郭勒褐煤具有最好的催化效果,褐煤的液化转化率和油水气收率最高,分别为46.5%和42.2%。气氛对锡林郭勒褐煤在超临界水中的液化性能具有较大的影响,在CO气氛下锡林郭勒褐煤的液化活性最高,420℃时褐煤的液化转化率和油水气收率最高,分别为52.2%和44.4%。这是由于在CO气氛下能够发生水煤气变换反应,可以为液化过程提供原位活性H,从而促进了油气收率和液化转化率的提高。  相似文献   

7.
Secondary vitroplast, produced by treating a Liddell vitrinite concentrate with tetralin in a continuous flow, packed-bed microreactor under a nitrogen pressure of 13.8 MPa at 360, 410 and 460 °C, has been analysed by i.r. spectroscopy, gel permeation chromatography, solid state 13C n.m.r. and reflectance microscopy. Results showed that this intermediate in the liquefaction process had the same carbon aromaticity as the untreated vitrinite concentrate and that both its aromaticity and reflectance were independent of the temperature of formation. It was concluded that the initial solution of the vitrinite concentrate in tetralin involved no significant hydrogenation of the vitrinite.  相似文献   

8.
Most studies of the hydrogenation of coal in hydrogen-donor solvents involve the reaction of hydrogen with coal slurried in tetralin, with or without catalysts. Reaction schemes proposed usually ignore the possibility of the contribution of products of the thermal breakdown of tetralin itself. In the work presented below tetralin was heated for various periods at temperatures between 300 and 450 °C without hydrogen or coal, and the products were analysed by capillary chromatography. The main products formed were naphthalene and the tetralin isomer 1-methyl indan. Tetralin did not disproportionate to naphthalene and decalin, although this has been suggested in the literature as a mechanism for the formation of the naphthalene usually observed. Naphthalene was produced, at temperatures as low as 350 to 400 °C, by dehydrogenation of the saturated ring. This ring also rearranged to give 1-methyl indan, and at higher temperatures broke open to yield alkyl benzenes. This cracking of the saturated ring was found to enhance the naphthalene formation.  相似文献   

9.
A bituminous Australian coal (Liddell) was liquefied in the absence of catalyst using tetralin as vehicle, and molecular deuterium and hydrogen—deuterium gas mixtures. The structures of the liquid and gaseous products were investigated by mass spectroscopy, 1H-and 2H-NMR spectroscopy and gel permeation chromatography (GPC). The proportion of 2H to 1H in the liquid products was found to be higher at 425°C than at 400°C because deuterium preferentially enters more aromatic rings at the higher temperature.The distributions of deuterium in the deuteromethanes formed during liquefaction show that deuterium randomly enters the structural groups in the coal which produce methane before the methane is released to the gas phase. This illustrates the extreme mobility of hydrogen, including the hydrogen that originates from the coal. As a consequence, it is proposed that hydrogen released as methane arises from a pool in which memory of the original bonding is lost.  相似文献   

10.
Chee Keung Chow 《Fuel》1981,60(12):1153-1158
The liquefaction behaviour of a Kentucky coal was studied in batch autoclave experiments at 410 °C under either a H2 or a N2 atmosphere (≈ 13.8 MPa) for reaction times of up to 2 h. To understand the catalytic roles of FeSO4 and a Co&z.sbnd;Mo catalyst in coal liquefaction and to assess the feasibility of using FeSO4 as a model for coal pyrites, effects of impregnation of the coal with FeSO4 and direct charges of a Co&z.sbnd;Mo catalyst on coal liquefaction and tetralin dehydrogenation were examined. Both catalysts increase the conversion to benzene-soluble material by 7–10%, and improve the selectivity values for conversion to oil and gas. In addition they are also active in the dehydrogenation of tetralin. The dehydrogenation activities of these catalysts correlate with their catalytic activities during coal liquefaction. Analyses of the mean chemical structures and the product distributions of the coal-derived liquid from liquefaction in H2 and in N2 atmospheres indicate that:
1. (1) H-transfer from tetralin is the only major mechanism of coal liquefaction; and
2. (2) both pyrrhotite, generated in-situ from FeSO4, and Co&z.sbnd; Mo catalyst can provide a major liquefaction mechanism by catalysing the H-transfer from the donor solvent to the coal or the coal-derived liquid.
  相似文献   

11.
The effect of demineralization on conversion of Soma Lignite in supercritical water extraction was studied using a batch autoclave operated at 400, 450 and 500 °C under nitrogen atmosphere. The experiments were carried out to investigate the effect of mineral matter and temperature on gaseous, liquid, residue yield and composition of gaseous products. According to the results, main product in gaseous state is CO2. Temperature is key factor affecting product distribution when compared the effect of minerals in lignite. As temperature was increased, yield of gas and solid residue increased, while yields of liquid decreased for raw and demineralized lignite samples. The removal of mineral matter caused to decrease the conversion for all lignite samples and to increase the carbon content of solid residue in supercritical water extraction.  相似文献   

12.
《Fuel》1987,66(10):1326-1329
Tritium labelled gaseous hydrogen was used to clarify the role of gaseous hydrogen in coal liquefaction. Wandoan coal was hydrogenated under 5.9 MPa (initial pressure) of 3H-labelled hydrogen and in unlabelled solvents such as tetralin, naphthalene and decalin at 400 °C and for 30 min in the presence or absence of NiMoAl2O3 catalyst. Without a catalyst, liquefaction proceeded by addition of the hydrogen from donor solvent. The NiMoAl2O3 catalyst enhanced both hydrogen transfer from gas phase to coal and hydrocracking of coal-derived liquids. With NiMoAl2O3 catalyst, liquefaction in naphthalene solvent proceeded through the hydrogen-donation cycle: naphthalene → tetralin → naphthalene. The amount of residues showed that this cycle was more effective for coal liquefaction than the direct addition of hydrogen from gas phase to coal in decalin solvent. The 3H incorporated in the coal-derived liquids from gas phase was found to increase in the following order: oil < asphaltenes < preasphaltenes < residue.  相似文献   

13.
崔晓曦  李忠  左永飞 《煤化工》2012,40(5):30-33,37
褐煤干馏提质技术可以实现气-液-固产品的分级转化利用,是一种资源节约型、环境友好型的资源转化途径。在已有的技术基础上,提出了褐煤提质技术多联产综合利用的构想,根据目标产品的不同,详细论述了以下几种可能实施的多联产耦合实例:褐煤干馏提质技术分别与煤洁净发电、合成化工产品、煤制天然气、煤间接制油等优化组合的多联产系统。  相似文献   

14.
The pyrolysis of tetralin has been studied at 500 °C. The pyrolysis products resulting from the decomposition of 1-13C-tetralin were analysed by 13C n.m.r. spectroscopy to determine the carbon redistribution in these substances. Some results were confirmed by experiments with 14C-labelled compounds. Under the conditions employed, carbon scrambling is observed only in the aliphatic portion of the products. The primary mode of decomposition of tetralin proceeds via homolysis of the 1–8a bond. No equilibrium between tetralin and naphthalene plus hydrogen takes place in the absence of a catalyst.  相似文献   

15.
The product from uncatalysed liquefaction of lignite using synthesis gas (CO-Steam process) was examined by column chromatography, high-resolution mass spectrometry, gas chromatography-mass spectrometry, and low-voltage mass spectrometry. The nature of the vehicle solvent affected the type and distribution of compounds in the product oil. Anthracene oil and recycle oil as solvents gave mainly aromatics and phenols. When tetralin was used as solvent, the product showed larger amounts of oxygen compounds, more hydroaromatic compounds, and a greater degree of alkylation in high-molecular-weight aromatics. Tetralin, therefore, appears to be a more powerful hydrogen donor than anthracene oil or recycle oil in stabilizing intermediate fragments that would otherwise repolymerize. Carbon-number analysis data for liquids prepared using three different solvents are presented.  相似文献   

16.
《Fuel》1986,65(3):337-341
Pyrolysis-g.c.-m.s. has been applied to study the effect on a lignite of hydrothermal treatment, in which coal is heated with water in an autoclave and hydroconversion, in which coal is heated with water and sodium formate in an autoclave. After the treatments, considerably smaller amounts of carbon oxides and carbon sulphides were found in the pyrolysates. The formation of the organic pyrolysis products was generally promoted by both treatments, whereas the yield of the hetero atom containing organic compounds as phenols and thiophenes was reduced considerably. The changes observed in the amounts of the various pyrolysis products indicate the modifications in the chemical structure of coals under the treatments applied, e.g. the partial elimination of carboxyl groups, carbonyl groups, ether bridges and sulphides.  相似文献   

17.
Direct wood liquefaction of pine sawdust (Pinus radiata) in a hydrogen donor solvent (tetralin), was studied in a 0.5 L autoclave using Co-Mo/γ-Al2O3 and Pt/γ-Al2O3 supported catalysts. Uncatalyzed as well as Raney Nickel catalyzed runs were also performed for comparison purposes. Reaction temperature was kept at 673 K and total system pressure at 10 MPa in all cases. Weight ratio of solvent to solid loaded was 2:1, the gas phase being either H2 or N2. Independent runs were also performed with cellulose and lignin which are the main wood constituents. Reaction products were characterized by means of gas chromatography and solvent fractionation using specific solvents.  相似文献   

18.
Catalytic hydrogenation of naphthalene to decalin was studied over a carbon-supported rhodium catalyst in supercritical carbon dioxide solvent at 333 K, and the results were compared with those in an organic solvent. cis-, trans-Decalin and tetralin were formed from the beginning of the reaction in supercritical carbon dioxide. Higher concentration of hydrogen in carbon dioxide solvent and on the active site, and also the suppression of desorption of partially hydrogenated tetralin molecules from the active site would be responsible for higher selectivity to cis-decalin in supercritical carbon dioxide than that in an organic solvent.  相似文献   

19.
利用管式高压反应釜,以四氢萘为溶剂、FeS和S为催化剂,对神府煤进行了加氢液化研究,考察了催化剂、反应温度和反应气氛等因素对煤液化性能和产物组成分布的影响,同时对液化产物进行了红外光谱、元素分析以及酸性含氧官能团等结构表征。结果表明,FeS+S催化神府煤液化的最高四氢呋喃(THF)抽提率和油+气收率分别为69.5%和35.9%;未加催化剂时,神府煤液化THF抽提率和油+气收率都是最低的。  相似文献   

20.
Sirin Methakhup 《Fuel》2007,86(15):2485-2490
Extraction of Mae Moh lignite using toluene-tetralin mixture was performed in a batch reactor at a temperature range from 370 to 490 °C and under initial hydrogen pressure up to 12 MPa. Experiments were carried out to investigate the effects of temperature and initial hydrogen pressure on coal conversion, liquid yield and liquid composition. The effect of catalysts Fe2S3, Fe/Ni and Ni/Mo impregnated into activated carbon was also studied. In the absence of a catalyst, the oil yield decreased with temperature above 410 °C and the content of naphtha and kerosene increased while light gas oil and gas oil decreased with increasing temperature. The presence of catalyst would benefit the formation of lighter components, kerosene and light gas oil. Extraction in the presence of Ni/Mo catalyst, the liquid yield reached 64.6 wt% (daf) which included naphtha 2%, kerosene 72.8%, light gas oil 14.9%, gas oil 2.4% and long residue 7.9%. For GC-MS analysis, the fraction of kerosene was composed of tetralin, naphthalene, dodecamethyl-cycloheptasiloxane, methyl dodecanoate, tetradecamethyl-cycloheptasiloxane, ethyl dodecanoate, methyl tetradecanoate and dibutyl phthalate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号