首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
用AAO模板法制备硅纳米管   总被引:1,自引:0,他引:1  
先用二步阳极氧化法制备纳米孔平均孔径约为100 nm的Al/Al_2O_3(AAO)模板,再以AAO为模板用溶胶-凝胶法合成管径约为60-80 nm的硅纳米管,并用扫描电镜和透射电镜观察了硅纳米管的形貌。结果表明,AAO模板的孔径分别随着二步阳极氧化法中电解温度、氧化电压、硫酸和草酸混酸浓度的增大而增大,硅纳米管的形成与硅烷溶胶的嵌入方法、凝胶形成时间和温度有较大的关系。  相似文献   

2.
苎麻形态SiC多孔陶瓷的制备及表征   总被引:1,自引:0,他引:1  
以苎麻纤维为生物模板,经溶胶-凝胶和碳热还原过程制得具有苎麻纤维管状形态的SiC多孔陶瓷。研究了试样的物相构成、显微结构和孔特征,探讨了试样制备过程中的反应机理。结果表明SiO2溶胶与苎麻碳在真空环境、1500℃温度下的碳热还原反应主要为SiO2与C的固-固反应,也包括SiO与C及CO之间局部的气-固和气-气反应。经除碳后得到SiC多孔陶瓷保留了苎麻纤维的空心管状结构形貌,物相组成主要为β-SiC。经脱胶麻较之原麻所制备的试样管状纤维结构更为完整,试样孔结构主要为狭缝型孔隙,BET比表面积为12.97m2/g,BJH平均孔径为9.6nm,P/P0=0.97时的孔容为0.037731cm3/g,孔径分布呈多级分布特征。  相似文献   

3.
郑勇  郑瑛  林良旭  魏可镁 《功能材料》2006,37(12):1948-1950
以正硅酸乙酯(TEOS)与蔗糖为原料,采用溶胶-凝胶法制备碳硅干凝胶,利用过量的碳源作为造孔剂,在氩气气氛1500℃下进行碳热还原反应合成出新型双孔的SiC.用XRD、SEM、TEM和低温N2吸附-脱附等手段对合成的样品进行表征,结果表明:合成的样品为"刺球"状双孔的新型碳化硅,这种两种孔分别是"刺"碳化硅晶体上的孔(孔半径约为2~6nm)和"刺"与"刺"之间的隙间孔(孔半径约为6~40nm).其比表面积为113m2/g,孔体积为0.38m3/g.  相似文献   

4.
以蔗糖为碳源,硅酸钠为硅源,盐酸为酸度调节剂,硫酸为催化剂,通过简单的溶胶-凝胶过程和碳热还原法,快速合成出比表面积为159m2/g的碳化硅(SiC)。并以其作为载体,制备负载型Pd/SiC催化剂,研究其在CO和C3H6氧化反应中的催化活性。结果表明当Pd负载量为0.45%(质量分数)时,所制备的催化剂具有较高的活性,其中CO的最低完全转化温度为230℃,C3H6的最低完全转化温度为235℃。  相似文献   

5.
以正硅酸乙酯为模板硅源,间苯二酚—甲醛凝胶为炭前驱体,采用同步合成模板炭化(SSTCM)法制备了具有可控结构的中孔炭材料。炭材料的比表面积可达1500m^2/g,平均孔径在3nm~10nm之间。经过酸催化水解预处理的二氧化硅模板前驱体溶液与间苯二酚—甲醛溶液混合,碱性条件下使两者的溶胶凝胶反应同步发生,得到有机,无机凝胶混合物。再经炭化、HF去模,制得SSTCM炭材料。N2等温吸脱附研究表明,与炭前驱体聚合物同步合成的结构可调的二氧化硅模板,导致了SSTCM炭材料可控中孔结构的形成。循环伏安研究表明,采用这种同步合成模板炭化法制备的SSTCM炭材料质量比容量达270F/g,炭材料具有的典型中孔结构使其可能成为一种理想的双电层电容器电极材料。  相似文献   

6.
以正丙醇锆、乙酸、硼酸和木糖醇为原料, 采用溶胶-凝胶法, 通过碳热还原反应制备了纳米ZrB2粉末。在反应体系中, 木糖醇既提供反应所需的碳, 又与硼酸形成了配位化合物。通过对凝胶前驱体粉末进行傅里叶红外光谱以及热重分析, 探讨了溶胶-凝胶反应过程对碳热还原反应温度以及凝胶陈化时间的影响。结果表明, 引入木糖醇促进了反应过程的进行, 湿凝胶无需陈化处理, 并且降低了碳热还原温度。当木糖醇与正丙醇锆的摩尔配比为1.4时, 使用未经陈化的凝胶前驱体, 经1450℃碳热还原即可获得平均直径约50 nm的等轴状ZrB2纳米颗粒, 粉体氧含量为1.36wt%。  相似文献   

7.
以淀粉为碳源,正硅酸乙酯(TEOS)为硅源,通过溶胶-凝胶法制备了碳化硅前驱体淀粉-SiO_2凝胶,将干凝胶在氩气氛中进行碳热还原制备碳化硅(SiC).用XRD、IR、SEM、TEM及N_2低温物理吸附等手段对合成的样品进行表征.结果表明,在淀粉-SiO2凝胶中添加镍催化剂在1450℃下就能合成出尺寸大小为40~60nm多孔高比表面积的纳米SiC,其孔径主要集中在4.2和10.6nm,比表面积为127.5m~2/g,孔体积为0.43cm~3/g.  相似文献   

8.
利用ZrO2-B2O3-C反应体系碳热还原的基本原理,分别使用正丙醇锆(Zr(OC3H7)4)、硼酸(H3BO3)和蔗糖(C12H22O11)为原料,采用溶胶-凝胶-碳热还原法合成了二硼化锆(ZrB2)纳米粉末。我们首先使用络合剂醋酸(AcOH)修饰Zr(OC3H7)4,以防止Zr(OC3H7)4的快速水解;其次,选用蔗糖作为碳源,是考虑到蔗糖热解时可以完全分解为碳,这样可以准确计算热解过程碳的生成量。此外,研究了凝胶温度对ZrB2纳米粉末形貌的影响。结果表明:当起始原料B/Zr(mol.)=2.3、热解温度为1 550℃时,通过碳热还原协同溶胶-凝胶法成功合成了单相ZrB2纳米粉末;当凝胶温度分别为65、75和85℃时,ZrB2纳米粉末形貌从球状演变为链状,最后生长为棒状,生长机理为定向吸附。  相似文献   

9.
以廉价水玻璃为原料, 通过控制水解条件, 合成出具有不同尺寸的SiO2溶胶, 并与间苯二酚-甲醛(RF)溶胶形成均相的凝胶复合物, 经常压干燥、炭化、酸洗, 得到具有可控结构的中孔炭材料。考察了水解温度、水解时间和反应物组成对孔结构的影响, 并通过氮气吸附、扫描电镜和透射电镜对材料的微观结构进行了表征。结果表明: 中孔炭的孔隙反相复制于SiO2凝胶网络, 其平均孔径随水解时间的延长或水解温度的升高而增大, 并在6~12 nm范围内精细调控, 而其总孔隙率可以通过改变炭、SiO2前驱体比例调节。对液相复合溶胶通过悬浮聚合法和喷雾干燥法处理, 分别制备出毫米级和微米级的中孔炭球, 进而实现了中孔炭在宏观形貌上的调控。本工作为中孔炭的低成本制备、精细结构调控以及球形功能化提供了重要参考。  相似文献   

10.
采用间苯二酚和糠醛作原料,以氢氧化钠为催化剂,通过溶胶-凝胶工艺制备出了梯度气凝胶。利用光学显微镜、扫描电镜、透射电镜及比表面和孔径分析仪等对反应体系的溶胶-凝胶过程及气凝胶的结构进行表征。讨论了不同温度、溶剂、反应物的质量分数等工艺参数对梯度气凝胶孔结构的影响。结果表明,沉降平衡使反应体系的溶胶产生浓度梯度,进而使气凝胶具有梯度结构。通过控制各种工艺参数来改变胶粒的沉降时间及沉降速度,可以使气凝胶的孔径梯度在0.01nm-8.9nm范围内发生改变。  相似文献   

11.
氯气刻蚀中孔碳化钛制备分等级孔结构炭材料   总被引:2,自引:0,他引:2  
以钛酸正丁酯为钛源、蔗糖为炭源,采用溶胶-凝胶法制得有机-无机复合干凝胶,后经高温炭热反应、氯气化学刻蚀分别得到中孔碳化钛及碳化物基炭材料(CDCS).通过XRD、Raman、SEM、TEM和氮气吸附等表征,考察了钛酸正丁酯/蔗糖摩尔比例(R)对所制碳化钛和CDCS的孔结构和物理特性的影响.结果表明:在碳热过程所形成的中孔和大孔孔隙能够在氯气刻蚀过程中保持并传递给最终的炭材料.所制CDCS具有三种不同层次的孔隙结构,分别为氯气刻蚀碳化钛品体所产生的微孔、源自蔗糖残留炭中所含的3nm~4nm中孔以及炭颗粒间相互叠加和连接所形成的大孔.通过改变R比值,所制CDCS的BET比表面积和孔容分别在1479m2/g~1640m2/g和1.06cm3/g~2.03cm3/g之间可调.  相似文献   

12.
Nanoporous carbon materials with a controlled pore size and surface area were prepared using grafting method. The use of 3-mercaptopropyltrimethoxysilane (MPTMS) as a grafting material played an important role in producing a porous structure by linking the silica to the polymer, with the subsequent formation of a silica-polymer composite. Importantly, the use of an organic solvent, compared to an aqueous solvent, has a positive effect in forming uniform and well-developed carbon structures, due to the high degree of dispersion with well-mixing of the carbon and silica precursors. The amounts of MPTMS and carbon precursor used determined the pore size and surface area of resulting carbon materials. The optimum ratio of MPTMS and carbon precursor for achieving a high surface area in excess of 2000 m2/g was determined. The use of a large amount of carbon precursor resulted in carbons with a relatively small surface area and an increase in MPTMS content led to an increase in the microporous structures. The capacitance value of the porous carbon prepared using the optimum ratio was determined to be 150 F/g.  相似文献   

13.
采用N2吸附、CO2吸附和热重红外联用等技术手段, 考察了在KOH活化稻壳炭的过程中碱炭比和活化温度对活性炭极微孔的影响。结果表明: 在不同碱炭比(0.6︰1~3︰1)和活化温度(640~780℃)下制备的稻壳活性炭, 极微孔主要分布在0.42~0.70 nm。当碱炭比增加时, 极微孔孔容先增大后减小; 而当活化温度升高时, 极微孔孔容呈降低趋势。极微孔率随碱炭比或活化温度的升高而单调递减。在活化温度为640℃、碱炭比为1: 1时, 可得极微孔孔容为0.149 mL/g、极微孔率达36.3%的微孔活性炭。活性炭的极微孔孔容与其在104 Pa时的CO2吸附量高度线性相关。  相似文献   

14.
以天然矿物埃洛石为模板, 蔗糖为碳源合成了具有“壳-核”结构的中孔炭。通过SEM、TEM、N2吸附、XRD、Raman、TG对样品进行了形貌和结构表征。结果表明: 模板炭具有一维管状结构, 与埃洛石具有相似的形貌。经过700℃和900℃炭化后的模板炭比表面积达到了945 m2/g和1147 m2/g, 孔容和中孔率也较埃洛石有了很大的提高。去除模板后得到的模板炭具有很高的纯度, 为无定形炭。升高炭化温度, 模板炭的拉曼特征参数R值降低, 热分解温度由563℃提高到623℃。同时, 对模板炭的形成过程及孔道形成机理进行了分析和讨论。  相似文献   

15.
Comparative research of matrix and bulk carbonization of some organic precursors (sucrose, acetonitrile) in silica mesoporous materials SBA-15 and KIT-6 was conducted. X-ray diffraction, nitrogen adsorption analysis, Raman spectroscopy were used for determination of the structural-sorption characteristics of the obtained materials. It was shown that the carbon mesoporous materials CMK-8 obtained in the mesopores of KIT-6 had higher adsorption characteristics because of features of three-dimensional cubic structure, larger pore volume and framework’s wall thickness. It was established that partially graphitized spatially well-organized carbon materials were formed as a result of pyrolysis of acetonitrile in the silica matrices SBA-15 and KIT-6. It was conditioned by the absence of considerable spatial limitations for growth of graphite structures on the initial stage of the synthesis when the pores of the matrix were not filled up with the organic precursor. Product of bulk carbonization of sucrose is compact carbon microporous framework with low sorption characteristics (micropore volume is 0.09 cm3/g).  相似文献   

16.
沸石矿为模板制备多孔炭的研究   总被引:7,自引:7,他引:7  
以几种沸石矿为模板、蔗糖为碳源,通过模板法制备了多孔炭,并用77K氮气吸附和X射线衍射仪(XRD)进行了表征。结果表明:此方法可以制备出具有一定比表面积和较大中孔容积的多孔炭.其中孔率随着模板中孔容积的增大而增加,但在所制多孔炭中存有少量的杂质。  相似文献   

17.
Abstract

We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g-1 at a 20 mV s-1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.  相似文献   

18.
采用NaY沸石分子筛作模板,乙酰丙酮为炭前驱体,使用液相浸渍-气相沉积工艺合成了富含微孔和中孔结构的多孔炭材料并对其进行了表征.所合成的多孔炭比表面积1351m2/g,孔容0.892cm3/g,微孔率0.63,孔径分布多在0.8nm~3.0nm之间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号