首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An infrared laser was used to ablate material from tissue sections under ambient conditions for direct collection on a matrix assisted laser desorption ionization (MALDI) target. A 10 μm thick tissue sample was placed on a microscope slide and was mounted tissue-side down between 70 and 450 μm from a second microscope slide. The two slides were mounted on a translation stage, and the tissue was scanned in two dimensions under a focused mid-infrared (IR) laser beam to transfer material to the target slide via ablation. After the material was transferred to the target slide, it was analyzed using MALDI imaging using a tandem time-of-flight mass spectrometer. Images were obtained from peptide standards for initial optimization of the system and from mouse brain tissue sections using deposition either onto a matrix precoated target or with matrix addition after sample transfer and compared with those from standard MALDI mass spectrometry imaging. The spatial resolution of the transferred material is approximately 400 μm. Laser ablation sample transfer provides several new capabilities not possible with conventional MALDI imaging including (1) ambient sampling for MALDI imaging, (2) area to spot concentration of ablated material, (3) collection of material for multiple imaging analyses, and (4) direct collection onto nanostructure assisted laser desorption ionization (NALDI) targets without blotting or ultrathin sections.  相似文献   

2.
Today, two-dimensional mass spectrometry analysis of biological tissues by means of a technique called mass imaging, mass spectrometry imaging (MSI), or imaging mass spectrometry (IMS) has found application in investigating the distribution of moleculesMSI with matrix-assisted laser desorption/ionization (MALDI) and secondary ion MS (SIMS). However, the size of the matrix crystal and the migration of analytes can decrease the spatial resolution in MALDI, and SIMS can only ionize compounds with relatively low molecular weights. To overcome these problems, we developed a nanoparticle-assisted laser desorption/ionization (nano-PALDI)-based MSI. We used nano-PALDI MSI to visualize lipids and peptides at a resolution of 15 microm in mammalian tissues.  相似文献   

3.
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) combines information-rich chemical detection with spatial localization of analytes. For a given instrumental platform and analyte class, the data acquired can represent a compromise between analyte extraction and spatial information. Here, we introduce an improvement to the spatial resolution achievable with MALDI MSI conducted with standard mass spectrometric systems that also reduces analyte migration during matrix application. Tissue is placed directly on a stretchable membrane that, when stretched, fragments the tissue into micrometer-sized pieces. Scanning electron microscopy analysis shows that this process produces fairly homogeneous distributions of small tissue fragments separated and surrounded by areas of hydrophobic membrane surface. MALDI matrix is then applied by either a robotic microspotter or an artist's airbrush. Rat spinal cord samples imaged with an instrumental resolution of 50-250 μm demonstrate lipid distributions with a 5-fold high spatial resolution (a 25-fold increase in pixel density) after stretching compared to tissues that were not stretched.  相似文献   

4.
An atmospheric pressure matrix-assisted laser desorption/ionization (AP MALDI) source coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT ICR MS) under UV laser and solid matrix conditions has been demonstrated to analyze a variety of labile oligosaccharides including O-linked and N-linked complex glycans released from glycoproteins. Spectra were acquired by both AP MALDI and vacuum MALDI and directly compared. The results presented here confirm that AP MALDI can generate significantly less energetic ions than vacuum MALDI and is able to produce the intact molecular ions with little or no fragmentation in both positive and negative ion mode analyses. Under certain conditions, noncovalent complexes of sialylated oligosaccharides were observed. The sensitivity attainable by AP MALDI was found to be comparable to conventional MALDI, and tandem mass spectrometry of oligosaccharides ionized by AP MALDI was shown to allow detailed structural analysis. Analysis of N-glycan mixtures derived from human fibrinogen further demonstrated that AP MALDI-FT ICR MS is ideal for the study of complex glycan samples as it provides high-accuracy, high-resolution mass analysis with no difficulty in distinguishing sample constituents from fragment ions.  相似文献   

5.
Mass spectrometry imaging (MSI) acquires a grid of spatially resolved mass spectra and provides a molecular landscape of a tissue. This can have a myriad of uses: from basic tissue characterization to a comprehensive pathological diagnosis. We have developed a fast, inexpensive, histology-compatible tissue preparation method for matrix-assisted laser desorption/ionization (MALDI)-MSI, which overcomes current sample preparation-imposed limitations in image resolution. Tissue sections are prepared via simultaneous fixation and matrix deposition. This is accomplished by incorporating the MALDI matrix into solvents that preserve tissue integrity when applied according to standard histology procedures. This concept was expanded to include multiple histology protocols, thereby enabling analysis to be tailored to a variety of biomolecules and tissue types.  相似文献   

6.
A new matrix compound, 2-nitrophloroglucinol, is reported which not only produces highly charged ions similar to electrospray ionization (ESI) under atmospheric pressure (AP) and intermediate pressure (IP) laserspray ionization (LSI) conditions but also the most highly charged ions so far observed for small proteins in mass spectrometry (MS) under high vacuum (HV) conditions. This new matrix extends the compounds that can successfully be employed as matrixes with LSI, as demonstrated on an LTQ Velos (Thermo) at AP, a matrix-assisted laser desorption/ionization (MALDI)-ion mobility spectrometry (IMS) time-of-flight (TOF) SYNAPT G2 (Waters) at IP, and MALDI-TOF Ultraflex, UltrafleXtreme, and Autoflex Speed (Bruker) mass spectrometers at HV. Measurements show that stable multiple charged molecular ions of proteins are formed under all pressure conditions indicating softer ionization than MALDI, which suffers a high degree of metastable fragmentation when multiply charged ions are produced. An important analytical advantage of this new LSI matrix are the potential for high sensitivity equivalent or better than AP-LSI and vacuum MALDI and the potential for enhanced mass selected fragmentation of the abundant highly charged protein ions. A second new LSI matrix, 4,6-dinitropyrogallol, produces abundant multiply charged ions at AP but not under HV conditions. The differences in these similar compounds ability to produce multiply charged ions under HV conditions is believed to be related to their relative ability to evaporate from charged matrix/analyte clusters.  相似文献   

7.
Urban PL  Chang CH  Wu JT  Chen YC 《Analytical chemistry》2011,83(10):3918-3925
Fruit fly (Drosophila melanogaster) is a standard model organism used in genetics and molecular biology. Phospholipids are building blocks of cellular membranes, and components of a complex signaling network. Here, we present a facile method, based on matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS), for molecular imaging of phospholipid distributions in submillimeter-sized components of the fruit fly reproductive system. Individual egg chambers were deposited on a specially prepared MALDI target comprising an aluminum slide with a rough surface created by ablation with a microsecond-laser: this helped to immobilize biological specimens, remove excess of saline solution by adhesive forces, carry out microscopic observations, and facilitated distribution of the MALDI matrix. A continuous-flow ultrasound-assisted spray was used for the deposition of MALDI matrix (9-aminoacridine) onto the sample. The upper surface of the specimen was then scanned with a 355-nm solid-state laser with a preset beam focus of 10 μm to obtain negative-ion mode MALDI-MS images. Overall, this provided sufficient spatial resolution to reveal micrometer-scale gradient-like patterns of phospholipids along the anterior/posterior axis of egg chambers. Several phosphatidylinositols are seen to be segregated according to the number of unsaturated bonds, with an elevated abundance of polyunsaturated phosphatidylinositols within the oocyte compartment.  相似文献   

8.
We describe a method for improving the homogeneity of MALDI samples prepared for analysis of small, single-stranded oligonucleotides using the widely used DNA matrix system, 3-hydroxypicolinic acid/picolinic acid/ ammonium citrate. This matrix system typically produces large crystals around the rim of the dried sample and requires tedious searching of this rim with the laser. However, when a substrate is prepared using both Nafion and a hydrophilic, high-molecular-weight polymer, such as linear polyacrylamide, linear poly(ethylene oxide), or methyl cellulose, oligonucleotide-doped matrix crystals tend to be smaller and more uniformly distributed across the entire spot, thus decreasing the time that is required for locating a usable signal. In addition to MALDI characterization of the spatial distribution of "sweet spots," fluorescence microscopy allows for imaging dye-labeled DNA in dried MALDI spots. The mechanism of enhanced uniformity may involve increased viscosity in the MALDI sample droplet due to partial solubilization of the substrate by the MALDI sample solvent as well as partitioning of the matrix or DNA between the solvent and the undissolved portion of the polymer substrate.  相似文献   

9.
A novel ionization source for biological mass spectrometry is described that combines atmospheric pressure (AP) ionization and matrix-assisted laser desorption/ionization (MALDI). The transfer of the ions from the atmospheric pressure ionization region to the high vacuum is pneumatically assisted (PA) by a stream of nitrogen, hence the acronym PA-AP MALDI. PA-AP MALDI is readily interchangeable with electrospray ionization on an orthogonal acceleration time-of-flight (oaTOF) mass spectrometer. Sample preparation is identical to that for conventional vacuum MALDI and uses the same matrix compounds, such as alpha-cyano-4-hydroxycinnamic acid. The performance of this ion source on the oaTOF mass spectrometer is compared with that of conventional vacuum MALDI-TOF for the analysis of peptides. PA-AP MALDI can detect low femtomole amounts of peptides in mixtures with good signal-to-noise ratio and with less discrimination for the detection of individual peptides in a protein digest. Peptide ions produced by this method generally exhibit no metastable fragmentation, whereas an oligosaccharide ionized by PA-AP MALDI shows several structurally diagnostic fragment ions. Total sample consumption is higher for PA-AP MALDI than for vacuum MALDI, as the transfer of ions into the vacuum system is relatively inefficient. This ionization method is able to produce protonated molecular ions for small proteins such as insulin, but these tend to form clusters with the matrix material. Limitations of the oaTOF mass spectrometer for singly charged high-mass ions make it difficult to evaluate the ionization of larger proteins.  相似文献   

10.
Zhang H  Cha S  Yeung ES 《Analytical chemistry》2007,79(17):6575-6584
Due to a high background in the low-mass region, conventional MALDI is not as useful for detecting small molecules (molecular masses <500 Da) as it is for large ones. Also, spatial inhomogeneity that is inherent to crystalline matrixes can degrade resolution in imaging mass spectrometry (IMS). In this study, colloidal graphite was investigated as an alternative matrix for laser desorption/ionization (GALDI) in IMS. We demonstrate its advantages over conventional MALDI in the detection of small molecules such as organic acids, flavonoids, and oligosaccharides. GALDI provides good sensitivity for such small molecules. The detection limit of fatty acids and flavonoids in the negative-ion mode are in the low-femtomole range. Molecules were detected directly and identified by comparing the MS and MS/MS spectra with those of standards. Various fruits were chosen to evaluate the practical utility of GALDI since many types of small molecules are present in them. Distribution of these small molecules in the fruit was investigated by using IMS and IMS/MS.  相似文献   

11.
Phospho- and glycolipids contained in the plasma membrane of neuronal tissue were profiled by direct infrared laser desorption/ionization orthogonal time-of-flight mass spectrometry (IR-LDI-o-TOF-MS), performed on cryosected native slices generated from rat brain. About 100 different detected lipid species are putatively assigned based on their molecular weight. Spraying of potassium acetate onto the slices was found to facilitate data interpretation in positive ion mode by reducing residual sodium adduct ion intensities. Coating the slices with matrix and using an ultraviolet laser for UV-MALDI-o-TOF-MS extends the analysis to peptides and small proteins but induces analyte diffusion. Peptides and partially cleaved proteins derived from proteolytic digests were recorded after incubation of native sections with trypsin and subsequent coating of the slices with MALDI matrix.  相似文献   

12.
The utility of atmospheric pressure infrared MALDI mass spectrometry (AP IR-MALDI) was assessed for plant metabolomics studies. Tissue sections from plant organs, including flowers, ovaries, aggregate fruits, fruits, leaves, tubers, bulbs, and seeds were studied in both positive and negative ion modes. For leaves, single laser pulses sampled the cuticle and upper epidermal cells, whereas multiple pulses were demonstrated to ablate some mesophyll layers. Tandem mass spectra were obtained with collision-activated dissociation to aid with the identification of some observed ions. In the positive mode, most ions were produced as potassium, proton, or sometimes sodium ion adducts, whereas proton loss was dominant in the negative ion mode. Over 50 small metabolites and various lipids were detected in the spectra including, for example, 7 of the 10 intermediates in the citric acid cycle. Key components of the glycolysis pathway occurring in the plant cytosol were found along with intermediates of phospholipid biosynthesis and reactants or products of amino acid, nucleotide, oligosaccharide, and flavonoid biosynthesis. AP IR-MALDI mass spectrometry was used to follow the fluid transport driven by transpiration and image the spatial distributions of several metabolites in a white lily (Lilium candidum) flower petal.  相似文献   

13.
We have achieved enhanced lipid imaging to a ~10 μm spatial resolution using negative ion mode matrix assisted laser desorption ionization (MALDI) imaging mass spectrometry, sublimation of 2,5-dihydroxybenzoic acid as the MALDI matrix, and a sample preparation protocol that uses aqueous washes. We report on the effect of treating tissue sections by washing with volatile buffers at different pHs prior to negative ion mode lipid imaging. The results show that washing with ammonium formate, pH 6.4, or ammonium acetate, pH 6.7, significantly increases signal intensity and number of analytes recorded from adult mouse brain tissue sections. Major lipid species measured were glycerophosphoinositols, glycerophosphates, glycerolphosphoglycerols, glycerophosphoethanolamines, glycerophospho-serines, sulfatides, and gangliosides. Ion images from adult mouse brain sections that compare washed and unwashed sections are presented and show up to 5-fold increases in ion intensity for washed tissue. The sample preparation protocol has been found to be applicable across numerous organ types and significantly expands the number of lipid species detectable by imaging mass spectrometry at high spatial resolution.  相似文献   

14.
Dai Y  Whittal RM  Li L 《Analytical chemistry》1996,68(15):2494-2500
The analytical performance of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is strongly influenced by the method of analyte and matrix preparation. We report a nonintrusive method based on laser confocal microscopic imaging technology to examine the MALDI samples prepared by various protocols. In this method, the analyte is tagged with a fluorescent group. The matrix and analyte are prepared under the same conditions as those used in conventional MALDI experiments. It is demonstrated that confocal microscopy can provide clear, three-dimensional images of sample crystals as well as the analyte distribution within the crystals. It is shown that the analyte is incorporated into the matrix crystals for all the sample preparation protocols examined. Moreover, the confocal microscopic images reveal that, with the use of a dried-droplet method for sample/matrix preparation, the analyte is not uniformly distributed within the matrix crystals. In some crystals, no analyte is incorporated. In addition, it is found that large crystals formed using a slow growth process display a more uniform analyte distribution. Relatively more uniform analyte distribution is observed for samples prepared with the formation of microcrystals. The possible correlation between the ion signal variations observed in MALDI and the uniformity of the analyte distribution obtained by the confocal microscopic imaging method is discussed. Finally, a double-imaging method involving the use of two analytes with different labeling groups is demonstrated. It is found that different analytes are not coherently distributed in the matrix crystals.  相似文献   

15.
The coupling of atmospheric pressure matrix-assisted laser desorption/ionization (AP MALDI) with Fourier transform mass spectrometry (FTMS) is described, and its significance for the high-resolution analysis of complex peptide mixtures is demonstrated. High kinetic energy and extensive metastable decay characteristic of ions generated by vacuum MALDI have been known to constitute a possible obstacle to high-resolution analysis by FTMS. Since the initial coupling of laser desorption techniques with FTMS was realized two decades ago, several different solutions have been proposed to control the energy of the ions and fulfill the promise of high sensitivity and high resolution offered by this analytical method. Initial results obtained on quadrupole time-of-flight and ion trap analyzers have shown that ions generated by MALDI at atmospheric pressure are intrinsically less energetic than those provided by vacuum MALDI. Our report indicates that this characteristic is particularly beneficial for FTMS applications in which a sharp reduction of metastable decay can make larger ion currents available for detection and possible tandem experiments. In our hands, AP MALDI-FTMS has enabled the analysis of complex peptide mixtures with resolution and accuracy comparable to those obtained by analogous electrospray ionization-FTMS experiments, with no evidence of either metastable decomposition or significant formation of matrix adducts. Analysis of a trypsin digest of bovine serum albumin provided signal-to-noise ratios and limits of detection similar to those obtained by ion trap analyzers, but with unmatched resolution and accuracy. AP MALDI has been shown to provide stable precursor ions in amounts that allowed for informative tandem experiments. Finally, the potential of AP MALDI-FTMS for the high-resolution screening of complex mixtures was demonstrated by the analysis of isobaric peptides differing in mass by less than 0.04 Da.  相似文献   

16.
Imaging mass spectrometry (MS) is a powerful technique for mapping the spatial distributions of a wide range of chemical compounds simultaneously from a tissue section. Co-localization of the distribution of individual molecular species, including particular lipids and proteins, and correlation with the morphological features of a single tissue section are highly desirable for comprehensive tissue analysis and disease diagnosis. We now report on the use, in turn, of desorption electrospray ionization (DESI), matrix assisted laser desorption ionization (MALDI), and then optical microscopy to image lipid and protein distributions in a single tissue section. This is possible through the use of histologically compatible DESI solvent systems, which allow for sequential analyses of the same section by DESI then MALDI. Hematoxylin and eosin (H&E) staining was performed on the same section after removal of the MALDI matrix. This workflow allowed chemical information to be unambiguously matched to histological features in mouse brain tissue sections. The lipid sulfatide (24:1), detected at m/z 888.8 by DESI imaging, was colocalized with the protein MBP isoform 8, detected at m/z 14117 by MALDI imaging, in regions corresponding to the corpus callosum substructure of the mouse brain, as confirmed in the H&E images. Correlation of lipid and protein distributions with histopathological features was also achieved for human brain cancer samples. Higher tumor cell density was observed in regions demonstrating higher relative abundances of oleic acid, detected by DESI imaging at m/z 281.4, and the protein calcyclin, detected by MALDI at m/z 10085, for a human glioma sample. Since correlation between molecular signatures and disease state can be achieved, we expect that this methodology will significantly enhance the value of MS imaging in molecular pathology for diagnosis.  相似文献   

17.
Application of mass spectrometry imaging (MS imaging) analysis to single cells was so far restricted either by spatial resolution in the case of matrix-assisted laser desorption/ionization (MALDI) or by mass resolution/mass range in the case of secondary ion mass spectrometry (SIMS). In this study we demonstrate for the first time the combination of high spatial resolution (7 μm pixel), high mass accuracy (<3 ppm rms), and high mass resolution (R = 100?000 at m/z = 200) in the same MS imaging measurement of single cells. HeLa cells were grown directly on indium tin oxide (ITO) coated glass slides. A dedicated sample preparation protocol was developed including fixation with glutaraldehyde and matrix coating with a pneumatic spraying device. Mass spectrometry imaging measurements with 7 μm pixel size were performed with a high resolution atmospheric-pressure matrix-assisted laser desorption/ionization (AP-MALDI) imaging source attached to an Exactive Orbitrap mass spectrometer. Selected ion images were generated with a bin width of Δm/z = ±0.005. Selected ion images and optical fluorescence images of HeLa cells showed excellent correlation. Examples demonstrate that a lower mass resolution and a lower spatial resolution would result in a significant loss of information. High mass accuracy measurements of better than 3 ppm (root-mean-square) under imaging conditions provide confident identification of imaged compounds. Numerous compounds including small metabolites such as adenine, guanine, and cholesterol as well as different lipid classes such as phosphatidylcholine, sphingomyelin, diglycerides, and triglycerides were detected and identified based on a mass spectrum acquired from an individual spot of 7 μm in diameter. These measurements provide molecularly specific images of larger metabolites (phospholipids) in native single cells. The developed method can be used for a wide range of detailed investigations of metabolic changes in single cells.  相似文献   

18.
We show that highly charged ions can be generated if a pulsed infrared laser and a glycerol matrix are employed for atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry with a quadrupole ion trap. Already for small peptides like bradykinin, doubly protonated ions form the most abundant analyte signal in the mass spectra. The center of the charge-state distribution increases with the size of the analyte. For example, insulin is detected with a most abundant ion signal corresponding to a charge state of four, whereas for cytochrome c, the 10 times protonated ion species produces the most intense signal. Myoglobin is observed with up to 13 charges. The high m/z ratios allow us to use the Paul trap for the detection of MALDI-generated protein ions that are, owing to their high molecular weight, not amenable in their singly protonated charge state. Formation of multiple charges critically depends on the addition of diluted acid to the analyte-matrix solution. Tandem mass spectra generated by collision-induced dissociation of doubly charged peptides are also presented. The findings allow speculations about the involvement of electrospray ionization processes in these MALDI experiments.  相似文献   

19.
When used in small molar ratios of matrix to analyte, derivatized fullerenes and single wall nanotubes are shown to be efficient matrices for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The mixing of an acidic functionalized fullerene with a solution of bioanalyte, depositing a dried droplet, and irradiating with a pulsed nitrogen laser yields protonated or cationized molecular ions. Derivatized fullerenes could offer several advantages over conventional MALDI matrices: a high analyte ionization efficiency, a small molar ratios (less than 1) of matrix/analyte, and a broader optical absorption spectrum, which should obviate specific wavelength lasers for MALDI acquisitions. The major disadvantage to the use of fullerenes is the isobaric interference between matrix and analyte ions; however, it is overcome by using MALDI-ion mobility time-of-flight (IM-oTOF) mass spectrometry to preseparate carbon cluster ions from bioanalyte ions prior to TOF mass analysis. However, an alternative to the dried droplet preparation of fullerene MALDI samples is the aerosolization of matrix-analyte solutions (or slurries) followed by impacting the aerosol onto a stainless surface. We also demonstrate that the fullerene matrices can be used to acquire spectra from rat brain tissue.  相似文献   

20.
Matrix sublimation has demonstrated to be a powerful approach for high-resolution matrix-assisted laser desorption ionization (MALDI) imaging of lipids, providing very homogeneous solvent-free deposition. This work presents a comprehensive study aiming to evaluate current and novel matrix candidates for high spatial resolution MALDI imaging mass spectrometry of lipids from tissue section after deposition by sublimation. For this purpose, 12 matrices including 2,5-dihydroxybenzoic acid (DHB), sinapinic acid (SA), α-cyano-4-hydroxycinnamic acid (CHCA), 2,6-dihydroxyacetphenone (DHA), 2',4',6'-trihydroxyacetophenone (THAP), 3-hydroxypicolinic acid (3-HPA), 1,8-bis(dimethylamino)naphthalene (DMAN), 1,8,9-anthracentriol (DIT), 1,5-diaminonapthalene (DAN), p-nitroaniline (NIT), 9-aminoacridine (9-AA), and 2-mercaptobenzothiazole (MBT) were investigated for lipid detection efficiency in both positive and negative ionization modes, matrix interferences, and stability under vacuum. For the most relevant matrices, ion maps of the different lipid species were obtained from tissue sections at high spatial resolution and the detected peaks were characterized by matrix-assisted laser desorption ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry. First proposed for imaging mass spectrometry (IMS) after sublimation, DAN has demonstrated to be of high efficiency providing rich lipid signatures in both positive and negative polarities with high vacuum stability and sub-20 μm resolution capacity. Ion images from adult mouse brain were generated with a 10 μm scanning resolution. Furthermore, ion images from adult mouse brain and whole-body fish tissue sections were also acquired in both polarity modes from the same tissue section at 100 μm spatial resolution. Sublimation of DAN represents an interesting approach to improve information with respect to currently employed matrices providing a deeper analysis of the lipidome by IMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号