共查询到20条相似文献,搜索用时 0 毫秒
1.
随着语义网的不断发展,网页语义的研究也在不断的进步。但现阶段的网络结构中,非语义化网页仍旧占据了信息系统最主要的部分。信息系统在整合的过程中,也需要了解网页的语义结构以完成信息的获取和分析。提出一种基于视觉特征筛选的网页语义结构分析方法。该方法可以在忽略网页语义的情况下,通过网页结构的视觉特性和内容特性分析网页中不同结构的语义关系,使用聚类分析方法来推定网页中半结构化信息的语义结构,并通过该方法对一组随机网页进行了分析,结果证明该方法具有比较好的分析能力。 相似文献
2.
郭红建 《数字社区&智能家居》2014,(31)
该文提出了一种基于语义计算的聚类算法。通过计算词语的语义信息,从语义知识库获取词语的生成概率,构建文本的语义表征,将余弦夹角和相对熵等方法引入进行文本单元的语义相似度计算对比实验。实验结果表明,该文提出的算法效果较好。 相似文献
3.
郭红建 《数字社区&智能家居》2014,(11):7432-7433
该文提出了一种基于语义计算的聚类算法。通过计算词语的语义信息,从语义知识库获取词语的生成概率,构建文本的语义表征,将余弦夹角和相对熵等方法引入进行文本单元的语义相似度计算对比实验。实验结果表明,该文提出的算法效果较好。 相似文献
4.
在处理大数据集聚类问题上,谱聚算法因存在占用存储空间大、时间复杂度高的缺陷而难以推广,针对此问题,提出采用多次分割、向上向下双向收缩的QR算法求得特征值对应的特征向量来实现降维,并在此基础上构造映射空间上的样本来实现量子遗传谱聚算法的聚类。该方法通过映射为后续的量子遗传谱聚算法聚类提供低维的输入,而量子遗传算法具有快速收敛到全局最优并且对初始化不敏感的特性,从而可以获得良好的聚类结果。实验结果显示,使用该算法的聚类比谱聚算法、K-means算法、NJW算法等单一方法具有更好的收敛性、稳定性和更高的全局最优。 相似文献
5.
基于量子计算的并行性、进化计算简单、通用性好等优点,采用量子编码构造进化算法的染色体种群,再将二者引入到核聚类中来,提出了一种基于量子进化规划的核聚类算法.该算法充分利用了量子态的叠加性以及量子比特的概率表示,能够表示出许多可能的线性叠加状态,具有更好的种群多样性,因此将其用于解决核聚类算法中目标函数的优化问题,可以有效克服传统进化算法收敛速度慢以及早熟等问题.对Brodatz纹理图像及SAR图像进行分割,仿真实验结果表明该算法可以较好地改善图像分割效果. 相似文献
6.
数据库语义上的异构成为数据整合的重点和难点。针对该问题文章提出一种基于鱼群算法的异构数据库语义聚类算法。其思路是,首先对数据库属性信息进行向量化、矢量化,利用鱼群算法得到一个较优的聚类结果,再根据鱼群算法的结果使用模糊C-均值算法进行调整聚类。实例分析结果证明,该算法具有较高的聚类准确度。 相似文献
7.
8.
9.
10.
根据各分布信息源信息单元实体类的语义相似度,对于信息单元实体类进行聚类,是半自动地进行本体映射、构建分布异构信息资源全局视图的重要步骤。本文面向分布信息资源统一信息视图构建需求,利用基于本体的元数据模型及语义相似度,在其基础上定义了语义聚类特征,基于语义聚类特征设计了一种基于语义特征树的混合层次聚类算法SCFBHCA。从理论和实验两个角度对SCFBHCA算法进行了分析,对比HCA和HCP,该算法具有增量式和扩展性且效率更高。 相似文献
11.
12.
13.
14.
15.
基于遗传FCM算法的文本聚类 总被引:3,自引:1,他引:3
本文提出基于遗传FCM算法的文本聚类方法,首先采用LSI方法对文本特征进行降维,然后通过聚类有效性分析得到文本的类别数,最后再采用遗传FCM算法对文本进行聚类,这种方法较好的克服了FCM算法收敛于局部最优的缺陷,很好的解决了FCM算法对初值敏感的问题。实验表明提出的方法具有较好的聚类性能。 相似文献
16.
数据挖掘中聚类算法比较研究 总被引:16,自引:0,他引:16
聚类算法是数据挖掘的核心技术,本文结合提出了评价聚类算法好坏的5个标准,基于这5个标准,对数据挖掘中常用聚类算法作了比较分析,以便于人们更容易,更快捷地找到一种适用于特定问题的聚类算法。 相似文献
17.
本文介绍的算法使用了颜色直方图作为检索特征,利用遗传聚类算法对图像库的聚类结果,来实现基于内容的图像检索,此外,在算法中还融合了用户反馈技术来提高检索的准确率。 相似文献
18.
BTS(Best Two Step)聚类算法是结合层次聚类和划分聚类算法的两步聚类算法。层次聚类算法类与类之间不可以对象交换,很容易造成聚类质量不高的结果。而划分聚类对于初始值的设定以及异常噪声数据都很敏感,所以我们研究提出了BTS算法,实验证明BTS算法可达到高质量的聚类效果。 相似文献
19.
20.
魏丽 《数字社区&智能家居》2007,(11):637-639
聚类分析技术是数据挖据中的一种重要技术。本文介绍了数据挖掘对聚类的典型要求和聚类方法的分类,研究分析了聚类的主要算法.并从多个方面对这些算法的性能进行比较。 相似文献