首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
随着语义网的不断发展,网页语义的研究也在不断的进步。但现阶段的网络结构中,非语义化网页仍旧占据了信息系统最主要的部分。信息系统在整合的过程中,也需要了解网页的语义结构以完成信息的获取和分析。提出一种基于视觉特征筛选的网页语义结构分析方法。该方法可以在忽略网页语义的情况下,通过网页结构的视觉特性和内容特性分析网页中不同结构的语义关系,使用聚类分析方法来推定网页中半结构化信息的语义结构,并通过该方法对一组随机网页进行了分析,结果证明该方法具有比较好的分析能力。  相似文献   

2.
该文提出了一种基于语义计算的聚类算法。通过计算词语的语义信息,从语义知识库获取词语的生成概率,构建文本的语义表征,将余弦夹角和相对熵等方法引入进行文本单元的语义相似度计算对比实验。实验结果表明,该文提出的算法效果较好。  相似文献   

3.
该文提出了一种基于语义计算的聚类算法。通过计算词语的语义信息,从语义知识库获取词语的生成概率,构建文本的语义表征,将余弦夹角和相对熵等方法引入进行文本单元的语义相似度计算对比实验。实验结果表明,该文提出的算法效果较好。  相似文献   

4.
蒋勇  谭怀亮  李光文 《计算机应用》2011,31(9):2546-2550
在处理大数据集聚类问题上,谱聚算法因存在占用存储空间大、时间复杂度高的缺陷而难以推广,针对此问题,提出采用多次分割、向上向下双向收缩的QR算法求得特征值对应的特征向量来实现降维,并在此基础上构造映射空间上的样本来实现量子遗传谱聚算法的聚类。该方法通过映射为后续的量子遗传谱聚算法聚类提供低维的输入,而量子遗传算法具有快速收敛到全局最优并且对初始化不敏感的特性,从而可以获得良好的聚类结果。实验结果显示,使用该算法的聚类比谱聚算法、K-means算法、NJW算法等单一方法具有更好的收敛性、稳定性和更高的全局最优。  相似文献   

5.
基于量子计算的并行性、进化计算简单、通用性好等优点,采用量子编码构造进化算法的染色体种群,再将二者引入到核聚类中来,提出了一种基于量子进化规划的核聚类算法.该算法充分利用了量子态的叠加性以及量子比特的概率表示,能够表示出许多可能的线性叠加状态,具有更好的种群多样性,因此将其用于解决核聚类算法中目标函数的优化问题,可以有效克服传统进化算法收敛速度慢以及早熟等问题.对Brodatz纹理图像及SAR图像进行分割,仿真实验结果表明该算法可以较好地改善图像分割效果.  相似文献   

6.
数据库语义上的异构成为数据整合的重点和难点。针对该问题文章提出一种基于鱼群算法的异构数据库语义聚类算法。其思路是,首先对数据库属性信息进行向量化、矢量化,利用鱼群算法得到一个较优的聚类结果,再根据鱼群算法的结果使用模糊C-均值算法进行调整聚类。实例分析结果证明,该算法具有较高的聚类准确度。  相似文献   

7.
基于量子遗传聚类算法的入侵检测   总被引:1,自引:0,他引:1       下载免费PDF全文
汪林林  朱开伟 《计算机工程》2009,35(12):134-136
针对传统入侵检测算法当面临未知攻击时所缺乏的自适应性和智能化日益突出的问题,提出一种新的无监督、自适应的检测算法——量子遗传聚类算法(CQGA)。该算法利用各实例之间的欧氏距离作为相似度量标准,通过量子遗传算法寻找聚类中心以达到在无监督的条件下对数据集自动分类的目的。实验仿真结果显示,该算法能较为准确地对测试数据集进行分类,有效地解决自适应性和智能化问题。  相似文献   

8.
基于k最相似聚类的子空间聚类算法   总被引:1,自引:2,他引:1       下载免费PDF全文
子空间聚类是聚类研究领域的一个重要分支和研究热点,用于解决高维聚类分析面临的数据稀疏问题。提出一种基于k最相似聚类的子空间聚类算法。该算法使用一种聚类间相似度度量方法保留k最相似聚类,在不同子空间上采用不同局部密度阈值,通过k最相似聚类确定子空间搜索方向。将处理的数据类型扩展到连续型和分类型,可以有效处理高维数据聚类问题。实验结果证明,与CLIQUE和SUBCLU相比,该算法具有更好的聚类效果。  相似文献   

9.
潜在语义分析在进行大规模语义检索时计算效率较低、存储开销较大。针对该问题,提出一种基于聚类的潜在语义检索算法。通过文档之间的结构关系对文档进行聚类,利用簇代替文档分析潜在语义,以此减少处理文档的个数。实验结果表明,该算法能减少查询时间,且检索精确度较高。  相似文献   

10.
根据各分布信息源信息单元实体类的语义相似度,对于信息单元实体类进行聚类,是半自动地进行本体映射、构建分布异构信息资源全局视图的重要步骤。本文面向分布信息资源统一信息视图构建需求,利用基于本体的元数据模型及语义相似度,在其基础上定义了语义聚类特征,基于语义聚类特征设计了一种基于语义特征树的混合层次聚类算法SCFBHCA。从理论和实验两个角度对SCFBHCA算法进行了分析,对比HCA和HCP,该算法具有增量式和扩展性且效率更高。  相似文献   

11.
传统的文本聚类往往采用词包模型构建文本向量,忽略了词语间丰富的语义信息。而基于中心划分的聚类算法,容易将概念相关的自然簇强制分开,不能很好地发现人们感兴趣的话题。该文针对传统文本聚类算法的缺点,提出一种基于语义和完全子图的短文本聚类算法,通过对目前主流的三大语义模型进行了实验和对比,选择了一种较为先进的语义模型,基于该语义模型进行了聚类实验,发现新算法能较好地挖掘句子的语义信息且较传统的K-means有更高的聚类纯度。
  相似文献   

12.
针对高校共享单车调度中存在的路径规划不合理的问题,提出了一种基于局部聚类Kruskal算法.首先,对Kruskal算法进行重新整理,构建聚类Kruskal算法;随后,再考虑密度较高点不止一个的情况,增加了阈值判断功能;最后,通过实验,验证了本文方法的有效性.  相似文献   

13.
针对经典遗传规划算法(CGP)存在容易早熟收敛、运行效率低的缺陷,提出一种将分布式计算与遗传规划算法结合的计算模型.该模型利用个体迁移策略实现对种群的优化,克服易早熟的缺陷.并且采用分布式计算能够有效地节省算法的运行时间.最后通过对语音数据预测误差的比较,验证了改进后算法的有效性.实验表明,基于分布式粗粒度并行计算的遗传规划算法(CGGP)计算性能优于经典遗传规划算法(CGP).  相似文献   

14.
基于免疫规划的K-means聚类算法   总被引:48,自引:0,他引:48  
在分析K—means聚类算法的优越性和存在不足的基础上,提出了一种新的聚类算法——基于免疫规划的K—means聚类算法.理论分析和仿真结果表明,该算法不仅有效地克服了传统的K—means聚类算法易陷入局部极小值的缺点,而且明显地避免了对初始化选值敏感性的问题,同时也有较快的收敛速度.  相似文献   

15.
基于遗传FCM算法的文本聚类   总被引:3,自引:1,他引:3  
况夯  罗军 《计算机应用》2009,29(2):558-560
本文提出基于遗传FCM算法的文本聚类方法,首先采用LSI方法对文本特征进行降维,然后通过聚类有效性分析得到文本的类别数,最后再采用遗传FCM算法对文本进行聚类,这种方法较好的克服了FCM算法收敛于局部最优的缺陷,很好的解决了FCM算法对初值敏感的问题。实验表明提出的方法具有较好的聚类性能。  相似文献   

16.
数据挖掘中聚类算法比较研究   总被引:16,自引:0,他引:16  
聚类算法是数据挖掘的核心技术,本文结合提出了评价聚类算法好坏的5个标准,基于这5个标准,对数据挖掘中常用聚类算法作了比较分析,以便于人们更容易,更快捷地找到一种适用于特定问题的聚类算法。  相似文献   

17.
本文介绍的算法使用了颜色直方图作为检索特征,利用遗传聚类算法对图像库的聚类结果,来实现基于内容的图像检索,此外,在算法中还融合了用户反馈技术来提高检索的准确率。  相似文献   

18.
BTS(Best Two Step)聚类算法是结合层次聚类和划分聚类算法的两步聚类算法。层次聚类算法类与类之间不可以对象交换,很容易造成聚类质量不高的结果。而划分聚类对于初始值的设定以及异常噪声数据都很敏感,所以我们研究提出了BTS算法,实验证明BTS算法可达到高质量的聚类效果。  相似文献   

19.
针对大规模WCDMA无线网络基站布局规划问题,提出一种基于聚类分解的分层算法.在聚类分解中,以测试点信号增益矩阵构造聚类分解数据,并给出了收敛判定函数和相似度计算方法.在分层算法中,首先用K均值聚类将原问题分解为K个子规划问题,然后对各子问题求解整数规划问题,最后对各子问题的基站布局结果进行全局调整.仿真计算验证了该算法的有效性.  相似文献   

20.
聚类分析技术是数据挖据中的一种重要技术。本文介绍了数据挖掘对聚类的典型要求和聚类方法的分类,研究分析了聚类的主要算法.并从多个方面对这些算法的性能进行比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号