首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于Bipolar工艺设计,结合激光修调技术,实现一种四通道、低失调、低功耗、高增益的运算放大器。电路整体结构包含:基准偏置电路、差分输入及偏置补偿电路、中间级电路、输出及过流保护电路。输入级选择差分输入结构,采用输入偏置补偿设计,降低了输入失调电压和偏置电流;中间级采用射随器结构,结合密勒补偿电容及零点电阻,提高电路的稳定性;输出级采用B类的输出结构,结合过流保护设计,增加电路的安全性。电路封装后测试:输入失调电压10μV,输入偏置电流0.5nA,大信号电压增益130 dB,电源电流2.4mA,增益带宽积1.5MHz,噪声电压7.34nV/√Hz。  相似文献   

2.
基于结型场效应晶体管(JFET)和双极型晶体管(BJT)兼容工艺,设计了一种低失调高压大电流集成运算放大器。电路输入级采用p沟道JFET (p-JFET)差分对共源共栅结构;中间级以BJT作为放大管,采用复合有源负载结构;输出级采用复合npn达林顿管阵列,与常规推挽输出结构相比,在输出相同电流的情况下,节省了大量芯片面积。基于Cadence Spectre软件对该运算放大器电路进行了仿真分析和优化设计,在±35 V电源供电下,最小负载电阻为6Ω时的电压增益为95 dB,输入失调电压为0.224 5 mV,输入偏置电流为31.34 pA,输入失调电流为3.3 pA,单位增益带宽为9.6 MHz,具有输出9 A峰值大电流能力。  相似文献   

3.
基于双极型集成工艺设计并制作了一种高压摆率、低输入偏置电流、低输入失调电流的运算放大器。输入级采用p沟道结型场效应晶体管(PJFET)共源结构,有利于减小输入偏置电流,提高信号接收的灵敏度,实现高输入阻抗、低偏置电流、低输入失调电流和高压摆率。增益级采用常规的共射放大电路结构。输出级采用互补推挽输出结构,提升了驱动负载的能力,并克服交越失真。测试结果表明:在电源电压±15 V、25℃环境温度下,开环电压增益为114.49 dB,正压摆率为12.33 V/μs,负压摆率为-9.76 V/μs,输入偏置电流为42.52 pA,输入失调电流为4.23 pA,输出电压摆幅为-13.56~14.16 V,共模抑制比为105.56 dB,电源抑制比为107.91 dB。  相似文献   

4.
介绍了一种基于高速互补双极型工艺设计的宽带高速运算放大器。该运放输入级采用折叠式共射-共基结构能够增大输入级带宽,改进型威尔逊电流镜作为有源负载将差分输入信号转换为单端输出信号,并提高输入级差分增益;通过基极补偿技术补偿输入对管基极电流,降低输入偏置电流,提高运放精度。输出级采用双缓冲AB类输出级,能够消除交越失真,提高运放带负载能力,并为负载提供较大功率。Spectre仿真结果表明:在±15 V,25℃,1 kΩ负载电阻和10 pF负载电容条件下输入偏置电流为34.8 nA,静态电流≤8 mA,单位增益带宽365 MHz,压摆率428.1 V/μs, 0.01%精度建立时间为42.3 ns。  相似文献   

5.
于晓权  范国亮 《微电子学》2020,50(6):784-788
针对CMOS运算放大器存在的输入失调电压高、噪声性能差等问题,提出了一种基于双极结型场效应晶体管(BiFET)工艺的高输入阻抗运算放大器。采用P沟道JFET差分对作为输入级,实现了pA量级的极低输入偏置电流/失调电流和nV/Hz量级的极低输入噪声电压谱密度。采用双极晶体管构成的共集-共射增益级和互补推挽输出级,实现了100 dB的开环增益、10 V/μs的输出电压转换速率和10 MHz的带宽。该运算放大器适用于对微弱模拟信号的采集和放大。  相似文献   

6.
本文设计了一款低功耗放大器,整个放大器分为差分输入级、中间增益级、缓冲输出级以及偏置电路四部分。采用SOI工艺制作,提高了放大器的抗辐照能力。经流片测试,静态电源电流为0.8mA,输入失调电压为-0.9mV,输入失调电流为0.9nA。  相似文献   

7.
基于40 V标准双极工艺,设计了一种低噪声精密运算放大器电路。该电路主要用于高精度、高分辨率系统。介绍了运算放大器总体架构以及工作原理,对低噪声精密运算放大器设计关键技术,如输入偏置电流降低、频率稳定性补偿、输入失调电压降低等,进行了分析。利用Spectre软件进行了仿真,并进行了流片验证。对芯片进行了实际测试,结果显示,在±15 V工作电压条件下,该放大器的输入偏置电流为2 nA,输入失调电压为10 μV,大信号电压增益为132 dB,共模抑制比为135 dB,电源抑制比130 dB。电路满足高精度、高分辨率、低噪声等各种场合的应用需求。  相似文献   

8.
提出了一种由改进的前置差分运算放大器和差分式锁存器构成的高频、高速、低失调电压的动态比较器。前置预差分放大器采用PMOS交叉互连的负载结构,提升差模增益,进而减小输入失调。后置输出级锁存器采用差分双尾电流源抑制共模噪声,改善输出级失调,并加速比较过程。采用一个时钟控制的开关晶体管替代传统复位模块,优化版图面积,在锁存器中构建正反馈回路,加速了比较信号的复位和输出建立过程。采用65 nm/1.2 V标准CMOS工艺完成电路设计,结合Cadence Spectre工艺角和蒙特卡洛仿真分析对该动态比较器的延时、失调电压和功耗特性进行评估。结果表明,在1.2 V电源电压和1 GHz采样时钟控制下,平均功耗为117.1 μW;最差SS工艺角对应的最大输出延迟仅为153.4 ps;1 000次蒙特卡罗仿真求得的平均失调电压低至1.53 mV。与其他比较器相比,该动态比较器的电压失调和高速延时等参数有明显优势。  相似文献   

9.
基于国内某CMOS工艺设计了一种单一PMOS差分对的轨到轨输入、恒跨导CMOS运算放大器。输入级电路采用折叠共源共栅结构,通过体效应动态调节输入管的阈值电压扩展共模输入范围到正负电源轨,恒定共模输入范围内的跨导,自级联电流镜有源负载将差分输入转换为单端输出;输出级电路采用AB类结构实现轨到轨输出,线性跨导环确定输出管的静态偏置电流。在5 V电源电压,2.5 V共模电压,1 MΩ负载条件下,经Spectre仿真验证,该运算放大器开环增益为119 dB,相位裕度为58°,共模输入范围为0.0027~4.995 V,共模范围内跨导变化小于3%,实现了轨到轨输入共模范围内的跨导恒定。  相似文献   

10.
设计了一种新型的适用于低阈值电压(≤0.2 V)比较的比较器电路,用折叠结构作为差分输入,并将输入电压通过三极管转换成电流,再与原静态工作电流比较,得到比较器的电压输出.该电路的特点是将低阈值电压比较转换成电流比较,且利用威尔逊电流镜来确定直流工作点,省去了传统折叠式电压比较器输入级所必需的用于共源共栅器件的直流偏置电路,并有很好的精度和动态响应特性.  相似文献   

11.
一种新型滞环电流控制电路的设计   总被引:2,自引:0,他引:2       下载免费PDF全文
传统的滞环电流控制电路通过共基极差分放大器采样电流信号,放大器的偏置电流会对检测电流有较大影响.提出了一种新型滞环电流控制电路,其采用宽共模输入电压范围的比较器结构,电流检测信号从双极型晶体管基极输入,能有效减小对检测电流的影响.该电路在25 V 1.5μm BCD工艺下设计实现,运用在白光LED恒流驱动芯片之中.仿真结果表明该电路的共模输入电压范围为5~25 V,从检测电流吸收的偏置电流不超过308 nA,能较好地完成恒流控制的功能.  相似文献   

12.
基于CMOS工艺设计了一款轨到轨运算放大器,整体电路包括偏置电路、输入级、输出级以及ESD保护电路。电路中的输入级使用了一种全新的架构,通过一对耗尽型NMOS管作为输入管,实现轨到轨输入,同时在输入级采用了共源共栅结构,能够提供较高的共模输入范围和增益;在输出级,为了得到满摆幅输出而采用了AB类输出级;同时ESD保护电路采用传统的GGMOS电路,耐压大于2 kV。经过仿真后可知,电路的输入偏置电流为150 fA,在负载为100 kΩ的情况下,输出最高和最低电压可达距电源轨和地轨的20 mV范围内,当电源电压为5 V时能获得80 dB的CMRR和120 dB的增益,相位裕度约为50°,单位增益带宽约为1.5 MHz。  相似文献   

13.
针对传统全差分运算放大器电路存在输入输出摆幅小和共模抑制比低的问题,提出了一种高共模抑制比轨到轨全差分运算放大器电路。电路的输入级采用基于电流补偿技术的互补差分输入对,实现较大的输入信号摆幅;中间级采用折叠式共源共栅结构,获得较大的增益和输出摆幅;输出级采用共模反馈环路控制的A类输出结构,同时对共模反馈环路进行密勒补偿,提高电路的共模抑制比和环路稳定性。提出的全差分运算放大器电路基于中芯国际(SMIC) 0.13μm CMOS工艺设计,结果表明,该电路在3.3 V供电电压下,负载电容为5 pF时,可实现轨到轨的输入输出信号摆幅;当输入共模电平为1.65 V时,直流增益为108.9 dB,相位裕度为77.5°,单位增益带宽为12.71 MHz;共模反馈环路增益为97.7 dB,相位裕度为71.3°;共模抑制比为237.7 dB,电源抑制比为209.6 dB,等效输入参考噪声为37.9 nV/Hz1/2@100 kHz。  相似文献   

14.
本文基于CMOS工艺设计了一种新型的轨到轨集成运算放大器。对比分析传统轨到轨输入级设计的优劣,该运放选择采用单差分对输入级结构,使用耗尽型NMOS管作为输入对管,利用耗尽型NMOS管的体效应以及对输入级电路结构的优化,实现轨到轨输入,以AB类输出级结构实现轨到轨输出。经过Cadence仿真验证,工作在5 V单电源供电下,共模输入电压范围可以实现满轨0~5 V,增益高达141.1 dB,带宽1.7 MHz,相位裕度55.4°,具有较低的输入失调电压264μV、输入偏置电流9 pA。整体电路实现了近乎满轨的轨到轨的输出电压摆幅,达到轨到轨运算放大器的设计要求。  相似文献   

15.
一种适用于传感器信号检测的斩波运算放大器   总被引:1,自引:0,他引:1  
陈铖颖  黑勇  胡晓宇 《微电子学》2012,42(1):17-20,24
提出一种适合传感器微弱信号检测应用的全差分低噪声、低失调斩波运算放大器。采用两级折叠共源共栅运放结构,基于斩波稳定及动态元件匹配技术,通过在运放低阻节点的电流通路上添加斩波开关的设计方式,增加了运放的输入信号带宽和输出电压摆幅。芯片采用TSMC 0.18μm 1P6MCMOS工艺实现。测试结果表明,在1.8V电源电压,25kHz输入信号和300kHz斩波频率下,斩波运放输入等效失调电压小于120μV,在10Hz~1kHz之间,输入等效噪声为5nV/Hz1/2,最高开环增益为84dB,单位增益带宽为4MHz。  相似文献   

16.
该文设计了应用于无线局域网2.4GHz低噪声放大器(LNA),采用了SMIC0.18μm CMOS工艺技术和单端输入差分输出的电路结构.电路同时采用了双支路的电流复用技术,实现了低功耗、低噪声和高增益的性能;通过在输出级增加一级共栅级放大电路,有效地增加了电路的对称性;共源支路串联电感,解决了差分信号相位偏差问题.仿真结果表明,设计的LNA的噪声系数为1.76dB,增益为20.9dB,在1.8V电源电压下,功耗为8.5mW.  相似文献   

17.
《电子技术》2007,34(5):76-76
凌力尔特公司(Linear Technology Corporation)推出低成本高端电流检测放大器LT6106,该器件可以从高达36V的共模电压中分辨小的差分信号。LT6106的输入失调电压仅为250μV (最大值),满标度差分输入为500mV,具有2000:1的动态范围。其输入偏置电流保证不高于40nA,基本消除了偏置电流成为误差源的问题。为了应对故障情况,LT6106可以承受高达44V的共模电压,并可以在3.5μs之内响应信号变化。-40℃至125℃的工作温度范围使得LT6106非常适用于工业和汽车应用,如电源管理、运动控制和  相似文献   

18.
恒电压增益的低电压Rail—to—Rail运算放大器   总被引:3,自引:0,他引:3  
徐栋麟  林越  任俊彦 《微电子学》2001,31(4):246-251
基于 Alcatel的 0 .3 5μm标准 CMOS工艺 (VT=0 .6 5 V) ,模拟实现了工作电压低达 1 .8V、电压增益偏差仅为 3 % (整个输入共模偏置电压范围内 )的运算放大器 ;电路的设计也避免了差分输入对中 PMOS管和 NMOS管的 W/L的严格匹配 ,增强了电路对工艺的坚固性。对输入差分对偏置电流的控制电路、差分输入对的有源负载和 AB类 Rail- to- Rail输出级进行了整体考虑 ,确保电压增益恒定的新型结构 ,使该运放在 2 V电源电压下 ,电压增益达到 80 d B(1 0 kΩ 电阻和 1 0p F电容并联负载 ) ,单位增益带宽为 1 2 MHz,相位裕量 72°  相似文献   

19.
俞德军  孙明远  宁宁  刘洋 《半导体技术》2017,42(12):888-891,928
提出了一种改进的高输入电压调整电路结构,该电路结构在TSMC 0.25 μm BCD工艺平台进行验证.电路包括两个参考电压模块、两级调整电路和一个关断信号产生模块.介绍了初级电压调整和精确电压调整电路,可以产生稳定精确的输出电压,同时也提高了低输入电源电压时的输出电流能力.通过两级电源调整电路可以实现软启动功能,减小启动浪涌电压,提高启动性能.此外,关断模块产生可以可靠关闭高压模块和低压模块的两种控制信号,使得在待机模式下高压直流转换系统仅消耗极低的待机电流.该电路结构的输入电压可以在2.5~45 V宽幅范围内变化.在待机模式下,高压直流转换系统的待机电流最低仅300 nA,电源调整电路可以输出最高60 mA的负载电流.  相似文献   

20.
陈铖颖  黑勇  胡晓宇 《半导体技术》2011,36(12):944-947,967
提出了一种用于水听器电压检测的模拟前端电路,包括低噪声低失调斩波运算放大器,跨导电容(gm-C)低通滤波器,增益放大器三部分主体电路;低噪声低失调斩波运算放大器用于提取水听器前端传感器输出的微弱电压信号;gm-C低通滤波器用于滤除电压信号频率外的高频噪声和高次谐波;最后经过增益放大器放大至后级模数转换器的输入电压范围,输出数字码流;芯片采用台积电(TSMC)0.18μm单层多晶硅六层金属(1P6M)CMOS工艺实现。测试结果表明,在电源电压1.8 V,输入信号25 kHz和200 kHz时钟频率下,斩波运放输入等效失调电压小于110μV;整体电路输出信号动态范围达到80 dB,功耗5.1 mW,满足水听器的检测要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号