首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
计算机视觉技术用于混凝土结构表面裂缝检测,具有现场检测方便、效率高、客观性强的特点,但图像数据分析是该技术的核心,其中裂缝提取与定量测量较为复杂。为提高裂缝图像处理效率和准确率,将深度学习和数字图像处理技术相结合,提出一种裂缝检测方法。建立基于深度卷积神经网络的裂缝识别模型,在图像上自动定位裂缝并结合图像局域阈值分割方法提取裂缝。在裂缝宽度定量测量方面,采用双边滤波算法和三段线性变换对裂缝图像进行预处理,提高了裂缝边缘识别的精确度。通过改进边缘梯度法,实现裂缝最大宽度的定位和裂缝最大宽度的自动获取。该研究为全自动识别裂缝图像及高精度测量裂缝宽度提供了一种解决方法。  相似文献   

2.
Abstract: This article presents a new robust automated image processing method for detecting cracks in surface images of concrete structures. This method involves two steps: (1) development of an image filter for detecting major cracks using genetic programming (GP), and (2) elimination of residual noise after filtering and detection of indistinct cracks by iterative applications of the image filter to the local regions surrounding the cracks. The proposed method can be used for the accurate detection of cracks in surface images recorded under various conditions. Moreover, the widths of the detected cracks can be quantified on the basis of the spatial derivatives of the brightness patterns. The estimated crack widths are in good agreement with those measured manually.  相似文献   

3.
Crack observation is important for evaluating the structural performance and safety of reinforced concrete (RC) structures. Most of the existing image-based crack detection methods are based on edge detection algorithms, which detect cracks that are wide enough to present dark areas in the obtained images. Cracks initiate as thin cracks, generally having width less than the width of a pixel in images; such cracks are generally undetectable by edge detection-based methods.An image analysis method is proposed to observe the development and distribution of thin cracks on RC surfaces; it also allows estimation of crack widths. Image matching based on optical flow and subpixel is employed to analyze slight concrete surface displacements. Camera calibration is included to eliminate perspective effects and lens distortion. Geometric transformation is adopted so that cameras do not need to be perpendicular to the observed surface or specified positions. Formulas are proposed to estimate the width of shear crack opening. The proposed method was then applied to a cyclic test of an RC structure. The crack widths and their development analyzed by the image analysis were verified with human inspection in the test. In addition, concrete surface cracks that appeared at a very early stage of the test could be observed by the proposed method before they could be detected by the naked eye. The results thus demonstrate that the proposed image analysis method offers an efficient way applicable not only for structural tests but also for crack-based structural-health-monitoring applications.  相似文献   

4.
Crack assessment of bridge piers using unmanned aerial vehicles (UAVs) eliminates unsafe factors of manual inspection and provides a potential way for the maintenance of transportation infrastructures. However, the implementation of UAV‐based crack assessment for real bridge piers is hindered by several key issues, including the following: (a) both perspective distortion and the geometry distortion by nonflat structural surfaces usually appear on crack images taken by the UAV system from the pier surface; however, these two kinds of distortions are difficult to correct at the same time; and (b) the crack image taken by a close‐range inspection flight UAV system is partially imaged, containing only a small part of the entire surface of the pier, and thereby hinders crack localization. In this paper, a new image‐based crack assessment methodology for bridge piers using UAV and three‐dimensional (3D) scene reconstruction is proposed. First, the data acquisition of UAV‐based crack assessment is discussed, and the UAV flight path and photography strategy for bridge pier assessment are proposed. Second, image‐based crack detection and 3D reconstruction are conducted to obtain crack width feature pair sequences and 3D surface models, respectively. Third, a new method of projecting cracks onto a meshed 3D surface triangular model is proposed, which can correct both the perspective distortion and geometry distortion by nonflat structural surfaces, and realize the crack localization. Field test investigations of crack assessment of a real bridge pier using a UAV are carried out for illustration, validation, and error analysis of the proposed methodology.  相似文献   

5.
6.
基于图象子块分布特性的路面破损图象特征提取   总被引:1,自引:0,他引:1  
由于路面破损形式的多种多样,造成路面破损分类[1]成为一大难题,这极大的限制了路面破损自动检测的普及和发展,使得路面破损自动检测即使在发达国家也普及得不够理想。本文在前文提出的破损密度因子的基础上,进一步设计了出方向密度因子,得到一种基于图象子块分布特性的路面破损识别算法。通过仿真,验证了其对常见的5种路面破损类型进行分类的可行性。为了进一步验证我们提出的识别算法,论文选择了另外一种路面破损分类算法,即PROXIMITY算法进行神经网络仿真对比。神经网络的训练样本是两组,测试样本也是两组,进行了四次仿真对比。四次仿真结果都显示方向密度因子算法优于PROXIMITY算法。  相似文献   

7.
Monitoring Crack Changes in Concrete Structures   总被引:2,自引:0,他引:2  
Abstract:   This study proposes a crack-monitoring system to quantify the change of cracks from multitemporal images during the monitoring period. A series of images were taken from an off-the-shelf digital camera. Concrete cracks were extracted from the digital images by employing a series of image-processing techniques. The image coordinates and orientation of same cracks can be changed since the position and direction of the portable camera vary at every exposure time. To monitor the crack changes (width and length), it is critical to transform the image coordinates of cracks extracted from each image into the same object coordinates of the concrete surface. In this study, such a geometric relationship was automatically recovered using the two-dimensional (2D) projective transformation based on the modified iterated Hough transform (MIHT) algorithm, the result of which solved the transformation parameters. To improve the computational operation of MIHT, regions of parameter estimation were also investigated. The developed algorithms were applied to monitor the crack of the concrete specimen. As a result, the change of cracks on the concrete specimen was successfully detected and accurately quantified.  相似文献   

8.
Pavement cracking is one of the main distresses presented in the road surface. Objective and accurate detection or evaluation for these cracks is an important task in the pavement maintenance and management. In this work, a new pavement crack detection method is proposed by combining two‐dimensional (2D) gray‐scale images and three‐dimensional (3D) laser scanning data based on Dempster‐Shafer (D‐S) theory. In this proposed method, 2D gray‐scale image and 3D laser scanning data are modeled as a mass function in evidence theory, and 2D and 3D detection results for pavement cracks are fused at decision‐making level. The experimental results show that the proposed method takes advantage of the respective merits of 2D images and 3D laser scanning data and therefore improves the pavement crack detection accuracy and reduces recognition error rate compared to 2D image intensity‐based methods.  相似文献   

9.
Crack information provides important evidence of structural degradation and safety in civil structures. Existing inspection methods are inefficient and difficult to rapidly deploy. A real‐time crack inspection method is proposed in this study to address this difficulty. Within this method, a wall‐climbing unmanned aerial system (UAS) is developed to acquire detailed crack images without distortion, then a wireless data transmission method is applied to fulfill real‐time detection requirements, allowing smartphones to receive real‐time video taken from the UAS. Next, an image data set including 1,330 crack images taken by the wall‐climbing UAS is established and used for training a deep‐learning model. For increasing detection speed, state‐of‐the‐art convolutional neural networks (CNNs) are compared and employed to train the crack detector; the selected model is transplanted into an android application so that the detection of cracks can be undertaken on a smartphone in real time. Following this, images with cracks are separated and crack width is calculated using an image processing method. The proposed method is then applied to a building where crack information is acquired and calculated accurately with high efficiency, thus verifying the practicability of the proposed method and system.  相似文献   

10.
Crack sealing is a maintenance technique commonly used to prevent water and debris penetration and reduce future degradation in pavement. The conventional crack sealing operations are, however, dangerous, costly, and labor-intensive. Labor turnover and training are also increasing problems related to crack sealing crews. Automating crack sealing will improve productivity and quality, and offer safety benefits by getting workers off the road. The reduction in crew size and the increase in productivity of the automated sealing process will be translated directly into significant potential cost savings. The main objective of this study is to develop an automated system for sealing cracks in pavement, and to validate the developed system through field trials. A machine vision algorithm, which is composed of noise elimination, crack network mapping and modeling, and path planning, was developed to operate the proposed automated system effectively. Extension of the algorithms and tools presented in the study to other applications is also recommended for future studies.  相似文献   

11.
Crack is one of the most important pavement condition indicators that are immediately relevant to water ingress and pavement deterioration. In practices of pavement management, crack width has been extensively referenced by highway agencies to determine pavement crack severity. Accurate measurement of pavement crack width is meaningful for highway agencies in understanding the mechanism of crack formation, and in predicting crack propagation. This article presents a new automatic method for measuring crack width using the binary crack map images. The proposed method introduces a new crack width definition and formulates it using the Laplace's Equation so that crack width can be continuously and unambiguously measured. Two algorithms, including the crack blob extraction algorithm and the crack boundary extraction algorithm, are developed to implement the proposed formulation in an automated fashion. Experimental tests using both synthetic data and field data are conducted to demonstrate the accuracy and reliability of the proposed method. A case study on crack width propagation is also performed to demonstrate the practical capacity of the proposed method. The results of the experimental tests and the outcome of the case study have demonstrated that the proposed method, together with the existing crack map extraction algorithms, provides a promising means for consistent and unambiguous crack width measurement supporting automated pavement condition evaluation.  相似文献   

12.
地质雷达在边坡勘测中的应用   总被引:1,自引:0,他引:1  
本文利用地质雷达探测技术,使用SIR-20地质雷达,100MHz和400MHz天线收集不同时间边坡地表裂缝的探测图像.经图像图谱分析和归纳处理,结果表明地质雷达技术能够较好的探测裂缝的分布情况.由裂缝的分布情况推测该边坡可能存在一个滑动面,地表裂缝扩张是由滑动面引起的.  相似文献   

13.
This article proposes a deep learning‐based automated crack evaluation technique for a high‐rise bridge pier using a ring‐type climbing robot. First, a ring‐type climbing robot system composed of multiple vision cameras, climbing robot, and control computer is developed. By spatially moving the climbing robot system along a target bridge pier with close‐up scanning condition, high‐quality raw vision images are continuously obtained. The raw vision images are then processed through feature control‐based image stitching, deep learning‐based semantic segmentation, and Euclidean distance transform–based crack quantification algorithms. Finally, a digital crack map on the region of interest (ROI) of the target bridge pier can be automatically established. The proposed technique is experimentally validated using in situ test data obtained from Jang–Duck bridge in South Korea. The test results reveal that the proposed technique successfully evaluates cracks on the entire ROI of the bridge pier with precision of 90.92% and recall of 97.47%.  相似文献   

14.
随着我国公路隧道由建设为主朝建养并重转化,在运营里程快速增长与既有隧道劣化加剧的双重作用下,移动检测及结构安全快速诊断已成为目前公路隧道运营维养领域的研究热点之一。我国已研发了多种类型的隧道检测车,为裂缝、渗漏水等表观病害的快速检测提供了手段,然而公路隧道衬砌图像背景复杂、干扰因素多、裂缝占比小的特点,给检测数据的快速分析带来巨大挑战,已成为制约技术推广的主要瓶颈。基于深度学习算法,本文提出了一种将目标识别与语义分割进行组合的裂缝快速提取方法,首先采用Faster R-CNN网络对原始衬砌图像进行目标识别,判定所采集图片是否存在裂缝并智能框选出裂缝区域;随后对框选出的裂缝区域自动裁切,由此过滤不含裂缝的图片并去除含裂缝图片中的干扰背景,再利用U-Net语义分割网络对裂缝进行像素级分割。通过实际工程验证发现,单幅图像裂缝整体分割时间小于0.15 s,在常见各类干扰因素下,目标识别F1值可达到92%,语义分割像素准确度可达到98%以上。与阈值分割和同类智能分割算法相比,本方法显著提高了识别速度与精度,为从隧道检测车海量数据中进行快速准确的裂缝提取提供了良好手段。  相似文献   

15.
Pipeline surface defects such as cracks cause major problems for asset managers, particularly when the pipe is buried under the ground. The manual inspection of surface defects in the underground pipes has a number of drawbacks, including subjectivity, varying standards, and high costs. An automatic inspection system using image processing and artificial intelligence techniques can overcome many of these disadvantages and offer asset managers an opportunity to significantly improve quality and reduce costs. This article presents a system for the application of computer vision techniques to the automatic assessment of the structural condition of underground pipes. The algorithm consists of image preprocessing, a sequence of morphological operations to accurately extract pipe joints and laterals (where smaller pipe is connected to main bigger pipe), and statistical filters for detection of surface cracks in the pipeline network. The proposed approach can be completely automated and has been tested on over 1,000 scanned images of underground pipes from major cities in North America.  相似文献   

16.
Abstract:   Assessing the condition of underground pipelines such as water lines, sewer pipes, and telecommunication conduits in an automated and reliable manner is vital to the safety and maintenance of buried public infrastructure. To fully automate condition assessment, it is necessary to develop robust data analysis and interpretation systems for defects in buried pipes. This article presents the development of an automated data analysis system for detecting defects in sanitary sewer pipelines. We propose a three-step method to identify and extract cracks from contrast enhanced pipe images. This method is based on mathematical morphology and curvature evaluation that detects crack-like patterns in a noisy pipe camera scanned image. As cracks are the most common defects in pipes and are indicative of the residual structural strength of the pipe, they are the focus of this study. This article discusses its implementation on 225 pipe images taken from different cities in North America and shows that the system performs very well under a variety of pipe conditions.  相似文献   

17.
Abstract: This article presents a Beamlet transform‐based approach to automatically detect and classify pavement cracks in digital images. The proposed method uses a pavement distress image enhancement algorithm to correct the nonuniform background illumination by calculating the multiplicative factors that eliminate the background lighting variation. To extract linear features such as surface cracks from the pavement images, the image is partitioned into small windows and a Beamlet transform‐based algorithm is applied. The crack segments are then linked together and classified into four types: vertical, horizontal, transversal, and block. Simulation results show that the method is effective and robust in the extraction of cracks on a variety of pavement images.  相似文献   

18.
Road cracks are a major concern for administrators. Visual inspection is labor-intensive. The accuracy of previous algorithms for detecting cracks in images requires improvement. Further, the length and thickness of cracks must be estimated. Light detection and ranging (Lidar), a standard smartphone feature is used to develop a method for the completely automatic, accurate, and quantitative evaluation of road cracks. The two contributions of this study are as follows. To achieve the highest segmentation accuracy, U-Net is combined with data augmentation and morphology transform. To calculate the crack length and thickness, crack images are registered into Lidar color data. The proposed algorithm was validated using a public database of road cracks and those measured by the authors. The algorithm was 95% accurate in determining crack length. The coefficient of determination for thickness estimation accuracy was 0.98 addressing various crack shapes and asphalt pavement patterns.  相似文献   

19.
本文研究土体裂隙的量测方法与定量化表征指标,基于MATLAB程序语言开发了一套能进行单张、批量土体裂隙图像处理、三维重建的软件.运用软件,对合肥膨胀土进行失水收缩开裂的试验,通过记录试样的开裂及裂隙演化过程,定量分析裂隙度、裂隙总长度、裂隙平均宽度以及裂隙分形维数等指标随含水率的变化关系.结合张拉破坏及体积收缩相关理论...  相似文献   

20.
基于数字图像技术的结构裂缝参数分析   总被引:1,自引:0,他引:1  
基于数字图象处理技术,提取并分析了含结构裂缝照片中与裂缝分布有关的数字特征参数.首先考虑拍摄环境条件(如光线强度等),通过对灰度图像设定适当阈值来区分图像中的裂缝与图像背景,获得了相应二值图像;然后结合形态学膨胀与腐蚀技术,消除二值图像中的噪点,使用边缘检测技术提取裂缝的边缘图像;进而得到裂缝的面积、长度、平均宽度、宽度最大值、宽度最小值以及记盒维数等数字特征参数.这一方法为已有建筑物结构裂缝的确认与分析提供了一条新的途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号