首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
李莎  刘根起  梁迪迪  刘勇  廖家娥 《粘接》2013,(12):57-60
以黄原胶和丙烯酸为原料,N,N’一亚甲基双丙烯酰胺为交联剂,过硫酸钾为引发剂在水溶液中制得黄原胶接枝聚丙烯酸水凝胶,研究了其对阳离子染料MB(亚甲基蓝)的吸附行为,及对MB@吸附热力学。结果表明,XG—g—PAA水凝胶对MB的吸附行为符合Langmuir吸附等温式,其相关系数为0.9949i。  相似文献   

2.
《山东化工》2021,50(9)
采用水溶液聚合法制备出CMS/AMPS/AM水凝胶型吸附剂。采用扫描电子显微镜、傅里叶变换红外光谱仪等对水凝胶的形貌、结构进行表征,并对水凝胶吸附阳离子染料亚甲基蓝(MB)的性能进行了研究。结果表明:CMS/AMPS/AM水凝胶对MB的吸附量随吸附时间、水凝胶加量和初始浓度增加先增加后逐渐达到平衡;吸附量随p H值的升高先增加后降低;共存离子浓度越高,吸附量越低。  相似文献   

3.
《应用化工》2022,(6):1563-1568
以丙烯酰胺(AM)、丙烯酸(AA)和文冠果活性炭(XSBAC)为原料,制备文冠果活性炭水凝胶(XSBACH),并应用于亚甲基蓝(MB)的吸附。利用比表面积分析仪(BET)、红外光谱仪(FTIR)等设备对XSBACH的结构进行表征。探讨了亚甲基蓝溶液的浓度、pH值、温度及时间对XSBACH吸附量的影响。结果表明,在吸附时间为120 min, MB溶液浓度为500 mg/L,反应温度为303 K时,XSBACH对MB的吸附量最大,为295.36 mg/g。吸附过程符合伪二级动力学模型,等温吸附过程符合Langmuir吸附等温模型,在303~323 K温度范围内,XSBACH吸附MB的吉布斯自由能ΔG°<0、焓变ΔH°<0、熵变ΔS°<0,表明XSBACH吸附MB是一个自发的放热过程。  相似文献   

4.
采用有机酸草酸改性天然膨润土(RB),制备了草酸膨润土(OAB),同时考察了膨润土与草酸质量之比、OAB投加量、溶液初始pH值、亚甲基蓝(MB)初始浓度、吸附时间对OAB去除MB的影响。结果显示,在膨润土与草酸质量比为1:1,OAB投加量为2g/L,溶液初始pH值为6%8,MB初始浓度为200mg/L,吸附2h能达到最佳去处效果,饱和吸附量为96. 9mg/g。进一步研究了OAB吸附MB的吸附动力学和吸附等温模型,结果表明,拟二级动力学和Langmuir模型能更好地描述OAB吸附MB。此外,还采用SEM观察了OAB吸附亚甲基蓝前后的表面微观形貌特征,采用FTIR对吸附前后的OAB进行表征,均表现出了关联性。  相似文献   

5.
以有机插层膨润土、淀粉和丙烯酸为原料,N,N'-亚甲基双丙烯酰胺为交联剂制备了一种新型网络凝胶吸附剂.通过红外光谱(FT-IR)、X射线衍射(XRD)和扫描电镜(SEM)对凝胶结构进行了表征.研究了吸附剂对亚甲基蓝的吸附行为,考察了pH值、吸附时间和初始浓度等因素对吸附剂吸附性能的影响,并用不同等温方程对吸附数据进行了拟合.结果表明Skip等温模型的拟合效果更好,吸附剂在26℃,pH =6时对亚甲基蓝的最大量论吸附量为341 mg/g.再生实验表明凝胶吸附剂可多次回收利用.  相似文献   

6.
竹炭对亚甲基兰(MB)吸附的研究   总被引:6,自引:0,他引:6  
齐武兴  闫华 《浙江化工》2007,38(3):22-24
用可见分光光度法研究了竹炭对亚甲基兰(MB)吸附的行为。主要研究了竹炭颗粒大小、吸附时间、pH值、浓度、以及温度对吸附量的影响,并求出其吸附等温方程和动力学方程。  相似文献   

7.
以丙烯酰胺(AM)、丙烯酸(AA)和文冠果活性炭(XSBAC)为原料,制备文冠果活性炭水凝胶(XSBACH),并应用于亚甲基蓝(MB)的吸附.利用比表面积分析仪(BET)、红外光谱仪(FTIR)等设备对XSBACH的结构进行表征.探讨了亚甲基蓝溶液的浓度、pH值、温度及时间对XSBACH吸附量的影响.结果 表明,在吸附...  相似文献   

8.
以玉米淀粉与羧甲基纤维素(CMC)为骨架,以丙烯酸(AA)、丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为单体制备复合凝胶,对复合凝胶材料进行表征。以亚甲基蓝(MB)为吸附质,考察复合凝胶吸附剂对阳离子染料吸附过程的动力学和热力学行为,分析阳离子强度、水体pH值、染料初始质量浓度等对吸附剂吸附性能的影响。结果表明:玉米淀粉-CMC-g-AA-AM-AMPS凝胶是一种表面多孔的吸附材料,其比表面积为24.939 7 m2/g,平均吸附孔径为8.668 2 nm。凝胶对MB的吸附过程与准二级动力学模型和Langmuir模型拟合较好,属于单分子层的化学吸附。阳离子对凝胶吸附MB有明显抑制作用,抑制效果为Al3+>Ca2+>Na+。随着离子强度的增加,抑制作用越明显。在投加量为0.1 g、温度为298 K、pH值为11.0、MB初始质量浓度为2 000 mg/L条件下,吸附剂最大吸附量达到1 938.82 mg/g、去除率为96.94%,能有效去除MB。  相似文献   

9.
以自制氧化石墨烯(GO)和阿拉伯胶(GA)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为原料,采用一步水热反应法制备了GO/GA-g-PAMPS新型复合水凝胶,利用FTIR、XRD、SEM对复合水凝胶结构进行了表征。研究了GO浓度、溶液pH、染料初始浓度、吸附时间、吸附温度对阳离子染料亚甲基蓝(MB)和结晶紫(CV)吸附性能的影响。结果显示:水凝胶对阳离子染料具有较好的吸附效果,在GO浓度为0.3mol/mL,凝胶用量为0.05g,溶液pH为7,温度为50℃,染料初始浓度为200mg/L时,凝胶对MB和CV的吸附量和吸附率分别为395.68、381.70mg/g和98%、96%。凝胶经过5次循环使用后,对MB和CV的吸附率仍能达到82.6%和81.2%。吸附等温线和动力学研究表明,凝胶对MB吸附更符合Freundlich模型,对CV的吸附更符合Langmuir模型,准二级动力学模型能更好地描述两种阳离子染料的吸附过程。热力学研究表明水凝胶对两种染料吸附是自发、吸热和混乱度增加的过程。  相似文献   

10.
研究改性柿叶对亚甲基蓝的吸附性能,探讨了吸附剂用量、吸附时间、初始浓度、pH值、温度等因素对吸附性能的影响,结果显示:硝酸改性可明显提高柿叶对亚甲基蓝的吸附效果。室温下1L亚甲基蓝溶液(40mg/L),当吸附剂用量1g、吸附2.0h,溶液pH=5~11时吸附效果较好,吸附行为更符合Langmuir吸附等温式,饱和吸附量为100.4mg/g。  相似文献   

11.
研究了pH值、MB初始浓度、温度及吸附时间对生物炭接枝聚丙烯酸/丙烯酰胺复合树脂(BC-SA)亚甲基蓝(MB)吸附量的影响,对MB吸附过程进行了吸附等温线和动力学方程拟合,并采用SEM和FTIR对吸附MB前后的BC-SA进行了表征,探讨了BC-SA吸附MB机理。结果表明,BC-SA吸附MB的适用pH范围较宽,为3~10;MB的初始浓度为2 500 mg/L时,吸附量最大,可达1 748.5 mg/g; 30~50℃范围内,温度对吸附量影响不大;BC-SA吸附MB符合Langmuir方程和准二级动力学方程;BC-SA孔隙结构丰富,含有大量的羟基、羧基和酰胺基等官能团结构,可通过氢键、静电作用及离子交换等方式对MB进行吸附。  相似文献   

12.
利用自由基聚合和原位共沉淀法制备了1种磁性半纤维素接枝聚丙烯酰胺凝胶,研究了该凝胶吸附亚甲基蓝的性能,特别考察了凝胶用量、pH、吸附时间、亚甲基蓝初始含量等因素对吸附的影响。结果表明,磁性凝胶用量增大,凝胶单位吸附量下降;pH增大,凝胶吸附量增加;初始亚甲基蓝的质量浓度从25 mg/L增加到250 mg/L,凝胶吸附量不断增大。凝胶吸附亚甲基蓝的动力学符合准2级动力学方程,Langmuir、Freundlich和Temkin吸附等温线模型均能很好地拟合凝胶对亚甲基蓝的吸附过程。  相似文献   

13.
《广东化工》2021,48(14)
以N,N-亚甲基-双丙烯酰胺(MBA)为交联剂,通过漆酶/叔丁基过氧化氢(t-BHP)催化体系合成了具有高吸附性能的香草醛-g-丙烯酸(VA-g-AA)水凝胶,并研究了其对Cu~(2+)的吸附能力。结果表明,实验中合成的VA-g-AA水凝胶对Cu~(2+)具有较高的吸附性能。随着Cu~(2+)浓度的增大,水凝胶的吸附性能也增大。当Cu~(2+)浓度为2000 mg/L时,水凝胶的吸附量可达1268 mg/g。当Cu~(2+)溶液的pH值在2.0~5.0时,pH值越高越有利于水凝胶吸附。水凝胶对Cu~(2+)等温吸附和吸附动力学分别符合Freundlich模型和准一级动力学模型。  相似文献   

14.
以丙烯酸(AA)为原料,二丙烯酸酯(Pul DA)分散的氧化石墨烯(GO)纳米胶粒(GO-Pul DA)为增强剂,N,N'-亚甲基双丙烯酰胺(BIS)为交联剂,通过自由基共聚合制备了一系列结构均一的聚丙烯酸/氧化石墨烯复合水凝胶(PAA/GO-Pul DA)。考察了BIS质量浓度、GO质量浓度以及溶液pH值对复合水凝胶力学性能、吸水性和亚甲基蓝(MB)吸附量的影响。结果表明,当GO质量浓度从0.1 g/L增加至1.0 g/L时,复合水凝胶拉伸强度从5.0 k Pa增加至10.4 k Pa,断裂伸长率高于100%,当GO的质量浓度为0.3 g/L时,复合水凝胶的断裂伸长率最高为151%;复合水凝胶表现出pH敏感的高吸湿性,pH从3.0增加至6.8时,平衡溶胀比(SRe)变化可达386 g/g,pH=6.8时最大SRe高达490 g/g。当溶液pH值从3.0增加至11.0时,PAA/GO-Pul D对MB的平衡吸附量(qe)可增加1 400~1 500 mg/g,pH=11.0时最大的qe高达1 789 mg/g。复合水凝胶对MB的吸附行为符合准一级动力学模型。5次吸附-解吸附循环后,相对于首次吸附,PAA/GO-Pul D对MB的吸附能力仍保持高达60%,解吸附效率高于90%。  相似文献   

15.
《应用化工》2022,(12):2259-2262
赤泥为氧化铝工业副产物,不仅量大而且污染环境。采用静态吸附实验确定赤泥吸附亚甲基蓝的适宜时间、温度、pH值、亚甲基蓝初始浓度、赤泥投加量范围,并考察了盐浓度对赤泥吸附亚甲基蓝的影响。结果表明,振荡时间5 min,赤泥投加量6 g/L,赤泥对40 mg/L亚甲基蓝的吸附率可达87%。亚甲基蓝浓度与赤泥吸附量符合Langmuir和Freundlich吸附等温式,最大吸附量为14.60 mg/g。赤泥吸附亚甲基蓝为放热反应,低温利于亚甲基蓝吸附。  相似文献   

16.
《应用化工》2016,(12):2259-2262
赤泥为氧化铝工业副产物,不仅量大而且污染环境。采用静态吸附实验确定赤泥吸附亚甲基蓝的适宜时间、温度、pH值、亚甲基蓝初始浓度、赤泥投加量范围,并考察了盐浓度对赤泥吸附亚甲基蓝的影响。结果表明,振荡时间5 min,赤泥投加量6 g/L,赤泥对40 mg/L亚甲基蓝的吸附率可达87%。亚甲基蓝浓度与赤泥吸附量符合Langmuir和Freundlich吸附等温式,最大吸附量为14.60 mg/g。赤泥吸附亚甲基蓝为放热反应,低温利于亚甲基蓝吸附。  相似文献   

17.
以硝酸锌和尿素为原料,采用水热法制备纳米多孔ZnO。通过X-射线衍射仪(XRD)、扫描电子显微镜(SEM)对所制备的纳米多孔ZnO进行成分和形貌表征,并将其用于吸附处理亚甲基蓝(MB)模拟工业染料废水,考察了溶液pH值、纳米多孔ZnO用量、MB溶液初始浓度对吸附效果的影响。结果表明:纳米多孔ZnO对MB有着较好的吸附能力;在室温20℃下,0.10g的纳米多孔ZnO对100mL初始浓度为10mg·L-1、pH值为12的MB溶液的吸附率达92.10%、平衡吸附量达9.21mg·g~(-1)。  相似文献   

18.
以AM和AA为单体,MBA为交联剂,在水溶液中利用GDEP引发一步制得P(AM-co-AA)水凝胶并研究了其对阳离子型染料MG的吸附特性。考察了pH、吸附时间,初始浓度等因素对吸附性能的影响,同时探讨了可能的吸附机理。结果表明,最佳的吸附pH为5.6,吸附时间为4 h,P(AM-co-AA)水凝胶对MG的吸附行为符合动力学准二级反应和Langmuir吸附等温式,用Langmuir吸附模型计算得到P(AM-co-AA)水凝胶对MG的最大吸附量为934.6 mg/g。  相似文献   

19.
实验针对羟基化碳纳米管(HCNTs)对模拟印染废水(亚甲基蓝溶液)的处理效果开展了相关研究,考察了亚甲基蓝溶液初始pH值和初始浓度、HCNTs投加量及吸附时间等因素对吸附效果的影响。实验得到HCNTs去除废水中亚甲基蓝的最佳条件为:亚甲基蓝初始pH值为8,HCNTs的添加量为400 mg/L,亚甲基蓝初始浓度为20 mg/L,吸附时间为180 min,在最佳工艺条件下亚甲基蓝吸附去除率可达96.9%。本研究结果可为羟基化碳纳米管在水处理方面的应用提供理论参考。  相似文献   

20.
以自制氧化石墨烯(GO)、阿拉伯胶(GA)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为原料,采用一步水热法制备了GO/GA-g-PAMPS复合水凝胶,利用FTIR、XRD、SEM对复合水凝胶结构进行了表征。考察了水凝胶对阳离子染料亚甲基蓝(MB)和结晶紫(CV)的吸附性能。结果显示:在GO质量浓度为0.3 g/L、凝胶用量为0.05 g、溶液pH为7、温度为50℃、染料初始质量浓度为200 mg/L时,凝胶对MB和CV的吸附量和吸附率分别为395.68、381.70mg/g和98%、96%。经5次循环后,凝胶对MB和CV的吸附率仍能达到82.6%和81.2%。吸附等温线和动力学研究表明,凝胶对MB吸附更符合Freundlich模型,对CV的吸附更符合Langmuir模型,准二级动力学模型能更好地描述两种阳离子染料的吸附过程。热力学研究表明,水凝胶对两种染料吸附是自发、吸热和混乱度增加的过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号