首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutron diffraction studies of retinal rod outer segment membranes   总被引:1,自引:0,他引:1  
Neutron diffraction measurements on isolated retinal rod outer segments show that most of the visual pigment protein, rhodopsin, is embedded in the hydrophobic core of the disk membrane. A very slight outward shift of protein at the cytoplasmic side of the membrane is associated with pigment bleaching.  相似文献   

2.
3.
Highly purified bovine rod outer segment membranes show loss of structural integrity under an air atmosphere. Obvious ultrastructural changes are preceded by increases in absorbance below 400 nm. These changes are inhibited by Ar or N2 atmospheres and appear to be due primarily to oxidative damage to the polyunsaturated fatty acids of the membrane lipids. Loss of polyunsaturated fatty acids, formation of malonaldehyde and fluorescent products characteristic of lipid oxidation accompany the spectral alterations. The elevated ultraviolet absorbance can largely be removed from the membranes by gentle extraction of the lipids using phospholipase C and hexane without changing the visible absorbance of rhodopsin. We have found a large seasonal variation in the endogenous level of alpha-tocopherol (vitamin E) in the bovine rod outer segment preparations. For much of the year we find that the rod outer segment membranes contain higher levels of alpha-tocopherol than have been previously reported in biological membranes. Rod outer segments which are low in endogenous tocopherol can be protected from oxygen damage by adding exogenous tocopherol. The rod outer segments are extremely susceptible to oxygen damage due to the unusually high content of polyunsaturated fatty acids in the membrane lipids. The presence of tocopherol inhibits oxygen damage but does not eliminate it. The tocopherol in the rod outer segments is consumed in air, thus complete protection from peroxidation in vitro requires an inert atmosphere as well as high levels of tocopherol. This work suggests that extensive precautions against oxidative degradation should also be employed in studies of other membrane systems where important deleterious effects of oxygen may be less obvious.  相似文献   

4.
Peripherin/rds plays an essential role in the maintenance of photoreceptor rod cell disk membrane structure. The purification of this protein to homogeneity [Boesze-Battaglia, K., et al. (1997) Biochemistry 36, 6835-6846] has allowed us to characterize the functional role of peripherin/rds in the maintenance of rod outer segment (ROS) membrane fusion processes. Utilizing a cell-free fusion assay system, we report that the fusion of R18-labeled ROS plasma membrane (R18-PM) with disk membranes or peripherin/rds-enriched large unilammellar vesicles (LUVs) is inhibited upon trypsinolysis of peripherin/rds. To understand this phenomenon, we tested the ability of a series of overlapping synthetic C-terminal peripherin/rds peptides to mediate model membrane fusion. Within the 63 amino acid long region of the C-terminus, we identified a minimal 15 residue long amino acid sequence (PP-5), which is necessary to promote membrane fusion. PP-5 was able to inhibit R18-PM disk membrane fusion and promoted ANTS/DPX contents mixing in a pure vesicle system. This peptide (PP-5) promoted calcium-induced vesicle aggregation of phosphatidylethanolamine:phosphatidylserine LUVs. FTIR analysis confirmed the structural prediction of this peptide as alpha-helical. When modeled as an alpha-helix, this peptide is amphiphilic with a hydrophobicity index of 0.75 and a hydrophobic moment of 0.59. PP-5 has substantial biochemical and functional homology with other well-characterized membrane fusion proteins. These results demonstrate the necessity for peripherin/rds in ROS membrane fusion, specifically the requirement for an intact C-terminal region of this protein.  相似文献   

5.
Ca2+-modulated rod outer segment membrane guanylate cyclase (ROS-GC1) has been cloned and reconstituted to show that it is regulated by two processes: one inhibitory, the other stimulatory. The inhibitory process is consistent with its linkage to phototransduction; the physiology of the stimulatory process is probably linked to neuronal transmission. In both regulatory processes, calcium modulation of the cyclase takes place through the calcium binding proteins; guanylate cyclase activating proteins (GCAP1 and GCAP2) in the case of the phototransduction process and calcium-dependent GCAP (CD-GCAP) in the case of the stimulatory process. The cyclase domains involved in the two processes are located at two different sites on the ROS-GC1 intracellular region. The GCAP1-modulated domain resides within the aa 447-730 segment of ROS-GC1 and the CD-GCAP-modulated domain resides within the aa 731-1054 segment. In the present study the GCAP2-dependent Ca2+ modulation of the cyclase activity has been reconstituted using recombinant forms of GCAP2 and ROS-GC1, and its mutants. The results indicate that consistent to phototransduction, GCAP2 at low Ca2+ concentration (10 nM) maximally stimulates the cyclase activity of the wild-type and its mutants: ext (deleted aa 8-408), kin (deleted aa 447-730) and hybrid consisting of the ext, transmembrane and kin domains of ANF-RGC and the C-terminal domain, aa 731-1054, of ROS-GC1. In all cases, it inhibits the cyclase activity with an IC50 of about 140 nM. A previous study has shown that under identical conditions the kin and the hybrid mutant are at best only minimally stimulated. Thus, the GCAP1 and GCAP2 signal transduction mechanisms are different, occurring through different modules of ROS-GC1. These findings also demonstrate that the intracellular region of ROS-GC1 is composed of multiple modules, each designed to mediate a particular calcium-specific signalling pathway.  相似文献   

6.
7.
Simultaneous measurements of photocurrent and outer segment Ca2+ were made from isolated salamander cone photoreceptors. While recording the photocurrent from the inner segment, which was drawn into a suction pipette, a laser spot confocal technique was employed to evoke fluorescence from the outer segment of a cone loaded with the Ca2+ indicator fluo-3. When a dark-adapted cone was exposed to the intense illumination of the laser, the circulating current was completely suppressed and fluo-3 fluorescence rapidly declined. In the more numerous red-sensitive cones this light-induced decay in fluo-3 fluorescence was best fitted as the sum of two decaying exponentials with time constants of 43 +/- 2.4 and 640 +/- 55 ms (mean +/- SEM, n = 25) and unequal amplitudes: the faster component was 1.7-fold larger than the slower. In blue-sensitive cones, the decay in fluorescence was slower, with time constants of 140 +/- 30 and 1,400 +/- 300 ms, and nearly equal amplitudes. Calibration of fluo-3 fluorescence in situ from red-sensitive cones allowed the calculation of the free-Ca2+ concentration, yielding values of 410 +/- 37 nM in the dark-adapted outer segment and 5.5 +/- 2.4 nM after saturating illumination (mean +/- SEM, n = 8). Photopigment bleaching by the laser resulted in a considerable reduction in light sensitivity and a maintained decrease in outer segment Ca2+ concentration. When the photopigment was regenerated by applying exogenous 11-cis-retinal, both the light sensitivity and fluo-3 fluorescence recovered rapidly to near dark-adapted levels. Regeneration of the photopigment allowed repeated measurements of fluo-3 fluorescence to be made from a single red-sensitive cone during adaptation to steady light over a range of intensities. These measurements demonstrated that the outer segment Ca2+ concentration declines in a graded manner during adaptation to background light, varying linearly with the magnitude of the circulating current.  相似文献   

8.
Transducin serves as a mediator between the receptor protein, rhodopsin, and the effector protein, cGMP phosphodiesterase, in the visual process. Transducin is a protein composed of three polypeptides: T alpha, T beta, and T gamma, and acts as two functional units, the alpha-subunit and the beta gamma-complex. In the present study, I describe an efficient and fast method of purifying T alpha and T beta gamma using chromatography on a blue agarose column connected in tandem with an omega-amino octylagarose column. The recombination of T alpha and T beta gamma reconstitutes the functional heterotrimeric holoprotein, as demonstrated by the recovery of three native properties of transducin: 1) its capacity to exchange guanine nucleotide, 2) its GTP hydrolytic activity, and 3) the ADP-ribosylation of T alpha catalysed by pertussis toxin.  相似文献   

9.
PURPOSE: Effects of intravenous iodoacetate (a glycolysis inhibitor) and iodate (a metabolism inhibitor selective to retinal pigment epithelium) on light-evoked alkalinizations and hypoxia-induced acidifications were studied in the dark-adapted cat retina, in vivo, to learn about pH regulation. METHODS: pH was recorded in the extracellular space surrounding rod photoreceptors with double-barrelled H(+)-selective microelectrodes. RESULTS: Intravenous infusion of 5 mg/kg iodoacetate-induced alkalinizations in the outer nuclear layer and suppressed both light-evoked and hypoxia-induced pH responses immediately. Iodate injection (30 mg/kg) produced acidifications in the subretinal space and affected light-evoked alkalinizations gradually but not hypoxia-induced acidifications. CONCLUSIONS: These results suggest that rods glycolysis plays an important role in both light-evoked and hypoxia-induced pH responses. And the retinal pigment epithelium may have little concern with light-evoked alkalinizations except that it plays an important role in regenerating the rhodopsin to be needed for the light responses of photoreceptors. Furthermore, the finding of the intravenous-iodoacetate-induced alkalinization in the outer nuclear layer supports that acid production by rods in the dark is originated from glycolysis to support the dark current. The iodate-induced acidification in the subretinal space indicators that the retinal pigment epithelium might actively transport acids from the subretinal space to the choroid.  相似文献   

10.
The cGMP-gated channel of the rod photoreceptor cell plays a key role in phototransduction by controlling the flow of Na+ and Ca2+ into the outer segment in response to light-induced changes in cGMP concentrations. The rod channel is composed of two homologous subunits designated as alpha and beta. Each subunit contains a core region of six putative membrane spanning segments, a cGMP binding domain, a voltage sensor-like motif and a pore region. In addition the beta-subunit contains an extended N-terminal region that is identical in sequence to a previously cloned retinal glutamic acid rich protein called GARP. Three spliced variants of GARP (the GARP part of the beta channel subunit; full length free GARP; and a truncated form of GARP) are expressed in rod cells and localized within the outer segments. Immunoaffinity chromatography has been used to purify the channel from detergent solubilized rod outer segments. A significant fraction of the rod Na+/Ca(2+)-K+ exchanger copurifies with the channel as measured by western blotting suggesting that the channel can interact with the exchanger under certain conditions.  相似文献   

11.
Detachment of the neural retina from the retinal pigment epithelium induces photoreceptor degeneration. We studied the effects of this degeneration on the localization of two photoreceptor outer segment-specific integral membrane proteins, opsin and peripherin/rds, in rod photoreceptors. Results from laser scanning confocal microscopic and electron microscopic immunolocalization demonstrate that these two proteins, normally targeted to the newly-forming discs of the outer segments, accumulate in different sub-cellular compartments during photoreceptor degeneration: opsin immunolabeling increases throughout the photoreceptor cell's plasma membrane, while peripherin/rds immunolabeling occurs within cytoplasmic vesicles. The simplest hypothesis to explain our results is that these proteins are transported in different post-Golgi transport vesicles and separately inserted into the plasma membrane. More complex mechanisms involve having the two co-transported and then opsin finds its way into the plasma membrane but peripherin/rds does not, remaining behind in vesicles. Alternatively, both insert into the plasma membrane but peripherin/rds is recycled into cytoplasmic vesicles. We believe the data most strongly supports the first possibility. Although the transport pathways for these proteins have not been fully characterized, the presence of peripherin/rds-positive vesicles adjacent to the striated rootlet suggests a transport role for this cytoskeletal element. The accumulation of these proteins in photoreceptors with degenerated outer segments may also indicate that their rate of synthesis has exceeded the combined rates of their incorporation into newly forming outer segment disc membranes and their degradation. The accumulation may also provide a mechanism for rapid recovery of the outer segment following retinal reattachment and return of the photoreceptor cell to an environment favorable to outer segment regeneration.  相似文献   

12.
Photoreceptor disk membranes isolated from bovine rod outer segments are suspended in dilute aqueous sucrose (4.36 X 10(-3%)) and bleached, and their size and shape are determined with quasielastic and elastic light scattering. They are found to be extremely homogeneous spherical vesicles with a radius of 0.49 +/- 0.07 mum which appear to have derived from the native disk shape by osmotic swelling.  相似文献   

13.
PURPOSE: Interphotoreceptor retinoid-binding protein (IRBP), an extracellular protein believed to support the exchange of retinoids between the neural retina and retinal pigment epithelium (RPE) in the vertebrate eye, exhibits a modular, i.e., repeat, structure. The present study was undertaken to determine whether an individual module of IRBP has activity in retinoid transfer between the RPE and rod photoreceptors. METHODS: The retinoid transfer activity of a recombinant protein corresponding to the fourth module of Xenopus laevis IRBP (X4IRBP) was examined in two ways. First, X4IRBP was tested for its ability to support the regeneration of porphyropsin in detached/reattached Xenopus retina/RPE-eyecups. Following illumination and removal of native IRBP, Xenopus eyecups supplemented with 42 microM X4IRBP or (as a control) Ringer's solution were incubated in darkness and then analyzed for regenerated porphyropsin. Second, toad (Bufo marinus) RPE-eyecup preparations were used to evaluate X4IRBP's ability to promote the release of 11-cis retinal from the RPE. RESULTS: The regeneration of porphyropsin in X4IRBP-supplemented Xenopus retina/RPE-eyecups (0.45 +/- 0.04 nmol; mean +/- SEM, n = 11) exceeded that in controls (0.13 +/- 0.02 nmol, n = 11). For promoting the release of 11-cis retinal from the toad RPE, 42 microM X4IRBP was more effective than equimolar bovine serum albumin although considerably less than that of 26 microM native bovine IRBP. CONCLUSIONS: The results indicate a low but significant activity of IRBP's fourth module in reactions relevant to retinoid exchange.  相似文献   

14.
PURPOSE: To examine whether the vitronectin (VN) in serum is responsible for the serum stimulation of phagocytosis in the rod outer segment (ROS) by cultured retinal pigment epithelial (RPE) cells. METHODS: Vitronectin was removed from fetal bovine serum by heparin-agarose affinity chromatography. Concentrations in normal and depleted serum were determined by enzyme-linked immunosorbent assay, using a polyclonal antibody against bovine VN and commercially prepared human VN as a standard. A monoclonal antibody against human alpha v beta 5 was used in localization and in blocking experiments. Rod outer segment phagocytosis was measured using a flow cytometric assay. RESULTS: Affinity chromatography removed 95% of the VN from serum as determined by enzyme-linked immunosorbent assay. Vitronectin-depleted serum did not stimulate ROS phagocytosis by RPE cells. Commercially prepared VN added to serum-free medium stimulated ROS phagocytosis in a dose-dependent manner. Pretreatment of RPE cells with an antibody against alpha v beta 5, an integrin receptor for VN, had no effect on phagocytosis in the absence of serum but completely blocked the serum stimulation of ROS phagocytosis. Antibody against alpha v beta 5 demonstrated a variable labeling pattern on the cultured RPE cell surface with morphologically distinct cell clusters exhibiting less labeling. Those cell clusters exhibiting less receptor labeling also showed less uptake of fluorescent-labeled ROS. CONCLUSIONS: Vitronectin is the component responsible for serum stimulation of ROS uptake, and this uptake appears to be mediated by an alpha v beta 5 integrin. Although clearly important in vitro, a role for VN in ROS uptake by RPE cells in situ remains to be determined.  相似文献   

15.
To investigate the nature of the oxidative event that occurs during phagocytosis of retinal outer segments (ROS) by cultured human retinal pigment epithelial (RPE) cells, cells were incubated with isolated bovine ROS labeled with either the fluorescence probe carboxy-SNAFL-2 or the nonfluorescent, oxidizable probe 2',7'-dichlorodihydrofluorescein (H2DCF). The increase in fluorescence following phagocytosis was measured by a flow cytometer. Other measurements included: oxygen consumption using a Clark-type oxygen electrode, extracellular superoxide release by superoxide dismutase inhibitable lucigenin chemiluminescence, intracellular hydrogen peroxide (H2O2) production, and the effect of catalase inhibition on cellular thiobarbituric acid-reactive substances (TBARS) caused by phagocytosis. The activities of the enzymes NADPH oxidase and palmitoyl-CoA oxidase were also measured. H2DCF attached to bovine ROS was oxidized during phagocytosis with a time course suggesting oxidation subsequent to ROS uptake. Measurements of oxygen consumption showed a time-dependent increase of 10%, 4 h after ROS feeding, attributable to a doubling of the cyanide-resistant oxygen consumption. Intracellular H2O2 production also doubled 4 h after ROS phagocytosis. ROS uptake by RPE cells produced no significant extracellular superoxide, while extracellular superoxide production was readily demonstrated in a control macrophage cell line. Enzyme activity measurements showed that incubation of RPE cells with ROS doubled catalase activity without affecting superoxide dismutase or glutathione peroxidase activities. Inhibition of catalase during ROS uptake increased TBARS by 66%. Other enzyme activity measurements showed that human RPE cells possess both NADPH oxidase and palmitoyl-CoA oxidase activities. We conclude that ROS phagocytosis subjects RPE cells to an oxidative event on the same order of magnitude as measured in a macrophage. The event is not an extracellular macrophage-type respiratory burst and may be due to intracellular H2O2 resulting from an NADPH oxidase in the phagosome or from beta-oxidation of ROS lipids in peroxisomes. Irrespective of case, the enzyme catalase appears to be essential in protecting the RPE cell against reactive oxygen species produced during phagocytosis.  相似文献   

16.
The PSD-95/SAP90 family of proteins has recently been implicated in the organization of synaptic structure. Here, we describe the isolation of a novel Ras-GTPase activating protein, SynGAP, that interacts with the PDZ domains of PSD-95 and SAP102 in vitro and in vivo. SynGAP is selectively expressed in brain and is highly enriched at excitatory synapses, where it is present in a large macromolecular complex with PSD-95 and the NMDA receptor. SynGAP stimulates the GTPase activity of Ras, suggesting that it negatively regulates Ras activity at excitatory synapses. Ras signaling at the postsynaptic membrane may be involved in the modulation of excitatory synaptic transmission by NMDA receptors and neurotrophins. These results indicate that SynGAP may play an important role in the modulation of synaptic plasticity.  相似文献   

17.
Several mutations causing both photoreceptor degeneration and malfunction have been identified in humans and animals. Although intraocular injection of trophic factors has been shown to reduce photoreceptor death in a few conditions of rapid photoreceptor loss, it is unclear whether long-term beneficial changes in functional properties of affected photoreceptors can be obtained by treatment with these factors. The rds/rds mouse is a spontaneous mutant bearing a null mutation in the rds/peripherin gene, which is linked to many forms of dominant retinal degenerations in humans. Here, we report that intraocular adenovirus-mediated gene transfer of ciliary neurotrophic factor (CNTF) in this mutant reduces photoreceptor loss, causes a significant increase in the length of photoreceptor segments, and results in a redistribution and an increase in the retinal content of the photopigment rhodopsin. These effects are accompanied by a significant increase in the amplitude of the a- and b-waves of the scotopic electroretinogram. These results suggest that continuous administration of CNTF could potentially be useful for the treatment of some forms of retinal degeneration.  相似文献   

18.
In 1958, Campbell observed that certain artificial pupil displacements could considerably change acuity (measured by viewing gratings) while others had very little effect. He sought an explanation of the small retinal contribution to those effects that was consistent with the Stiles-Crawford effect. This paper suggests an explanation that satisfies that requirement using a waveguide model of the retinal cones. We show that the waveguiding properties of the receptors make them sensitive to obliquely incident exciting waves and this provides some support for the hypothesis that both the Stiles-Crawford and Campbell effects are manifestations of the same underlying waveguide nature of the receptors.  相似文献   

19.
Haploinsufficiency because of a null mutation in the gene encoding peripherin/rds has been thought to be the primary defect associated with the photoreceptor degeneration seen in the retinal degeneration slow (rds) mouse. We have compared the effects of this haploinsufficiency on rod and cone photoreceptors by measuring the levels of rod- and cone-specific gene expression, by determining the relative rates of rod and cone degeneration, and by electroretinography. These analyses were performed at ages before and after the onset of degeneration of the photoreceptor cells. The data were consistent in demonstrating that measures for cone photoreceptors are relatively spared in comparison to comparable measures for rod photoreceptors. Blue cones were retained in higher number than red/green cones for the first 3 months of the degeneration. Our results indicate that the haploinsufficiency present in rds/+ mice has a greater impact on the rod than on the cone photoreceptor, a finding that likely reflects the tight regulation of peripherin/rds and the need for two functional alleles to assemble the structure of the rod outer segment and/or differences between the ultrastructure of the rod and cone outer segments.  相似文献   

20.
Subcellular compartments in the outer retina of the larval tiger salamander were identified as likely sites of production of nitric oxide (NO), a recently recognized intercellular messenger. NADPH diaphorase histochemistry and NO synthase immunocytochemistry labeled photoreceptor ellipsoids and the distal regions of bipolar and glial cells apposing photoreceptor inner segments, suggesting a role for NO in visual processing in the outer retina. We investigated the actions of NO on several rod photoreceptor ion channels. Application of the NO-generating compound S-nitrosocysteine increased Ca2+ channel current and a voltage-independent conductance, but had no affect on voltage-gated K+ or nonspecific cation currents. Given the steep relation between voltage-dependent Ca2+ influx and photoreceptor synaptic output, these results indicate that NO could modulate transmission of the photoresponse to second order cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号