首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Young Atlantic salmon appear to occupy similar suitable stream habitats year round. The salmon is stationary, often associated with “home stones”. At low water temperatures in winter, the fish seek shelter in the substrate, which has to be coarse enough to provide interstices for the fish to hide in. In summer, salmon select habitats within tolerable ranges of habitat variables, rather than narrow optima. It is suggested that a genetic basis to habitat evaluation allows incorporation of the full range of behavioural responses. This is important as partially different habitats may be selected in diverse streams. Habitat availability influences both habitat use and habitat preferences. Suitable summer habitats have depths in the range 5–90 cm; mean water velocities 10–80 cm s?1, and gravel-to-boulder substratum. Fish size affects habitat use, as young of the year are found in the more shallow habitats closer to the stream banks, whereas the older parr use a wider range of habitats. In the absence of brown trout, the Atlantic salmon parr, and especially young of the year, use habitats otherwise inhabited by brown trout. Water velocities are in many cases the principal physical habitat variable determining the distribution of Atlantic salmon in streams, but other variables are also important. Depth is more important in small streams than in large streams.  相似文献   

2.
Groundwater‐dominated streams have particular flow regimes that commonly support populations of trout. Meso‐ and micro‐habitat surveys were carried out on a reach of the river Tern that drains a Triassic sandstone aquifer in the English West Midlands, to investigate brown trout (Salmo trutta) habitat use with varying flows. Mesohabitats were mapped over a range of summer and autumn flows and coupled with direct underwater observation (snorkelling) of fish locations together with point measurements of velocity and depth. The number of habitat types recorded was low and dominated by glides, runs, and backwaters. Brown trout showed a strong association with glides and runs with adults being more associated with runs and parr with glides. General habitat use curves showed brown trout to favour depths between 0.30 and 0.40 m and velocities below 0.40 m s?1. A clear preference was shown for sand and gravel bed materials. However, the differentiation of hydraulic habitats was weak and there was no trend in mesohabitats or change in trout use of mesohabitats with discharge. The study raises limitations of the mesohabitat survey approach when linking fish ecology, flow and physical habitat in small streams with low flow variability and low habitat diversity. In these situations, other factors (especially cover features) appear to strongly influence brown trout distribution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Headwater streams support vital aquatic habitat yet are vulnerable to changing climate due to their high elevation and small size. Coldwater fish are especially sensitive to the altered streamflow and water temperature regimes during summer low flow periods. Though previous studies have provided insights on how changes in climate and alterations in stream discharge may affect habitat availability for various native cutthroat trout species, suitable physical habitats have not been evaluated under future climate projections for the threatened Greenback Cutthroat Trout (GBCT) native to headwater regions of Colorado, USA. Thus, this study used field data collected from selected headwater streams across the current distribution of GBCT to construct one-dimensional hydraulic models to evaluate streamflow and physical habitat under four future climate projections. Results illustrate reductions in both predicted streamflow and physical habitat for all future climate projections across study sites. The projected mean summer streamflow shows greater decline (−52% on average) compared to the projected decline in mean August flow (−21% on average). Moreover, sites located at a relative higher elevation with larger substrate and steeper slope were projected to experience more reductions in physical habitat due to streamflow reductions. Specifically, streams with step-pool morphologies may experience grater changes in available habitat compared to pool-riffle streams. Future climate change studies related to coldwater fish that examine spatial variation in flow alteration could provide novel data to complement the existing literature on the thermal characteristics. Tailoring reintroduction and management efforts for GBCT to the individual headwater stream with adequate on-site monitoring could provide a more holistic conservation approach.  相似文献   

4.
In winter, juvenile salmonids hide within the substrate during the day and emerge to feed on drifting invertebrates at night. In channelized streams, where the streambed heterogeneity has been artificially reduced, suitable microhabitats (low‐flow refugia) may be in short supply. Therefore, restoration of stream habitat by enhancement structures might improve the overwintering conditions of juvenile salmonids. We used a set of artificial streams to test whether individually‐marked juvenile brown trout of two age‐classes (age‐0 and age‐1 trout) loose mass during the winter differently in channelized and semi‐natural streams. Fish of both age‐classes lost mass early in the winter (November to January), but age‐0 fish in the channelized streams lost more of their initial mass than did the restored‐stream fish (ca. 10% vs. 2.5% on average, respectively). They then exhibited zero‐growth in both treatments in late winter (January to April), and by early spring (May), the channelized‐stream fish had completely caught up for their greater initial mass loss. In control tanks where the fish were fed continuously, age‐0 trout exhibited zero‐growth from November to January, then gaining mass constantly through the rest of the experiment. Significant time*treatment interaction was also detected for age‐1 trout, but all differences were caused by the faster growth of fish in the control tanks, whereas the two channel treatments did not differ significantly. The shortage of suitable sheltering sites in the channelized streams apparently intensified competition and caused greater initial mass loss in age‐0 trout. Furthermore, growth compensation exhibited by juvenile trout may have negative impacts on the long‐term fitness of individuals. Therefore, by increasing the amount of sheltering sites, in‐stream restoration may have potential to enhance the overwintering success of juvenile salmonids. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Hungry Horse Dam on the South Fork Flathead River, Montana, USA, has modified the natural flow regimen for power generation, flood risk management and flow augmentation for anadromous fish recovery in the Columbia River. Concern over the detrimental effects of dam operations on native resident fishes prompted research to quantify the impacts of alternative flow management strategies on threatened bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats. Seasonal and life‐stage specific habitat suitability criteria were combined with a two‐dimensional hydrodynamic habitat model to assess discharge effects on usable habitats. Telemetry data used to construct seasonal habitat suitability curves revealed that subadult (fish that emigrated from natal streams to the river system) bull trout move to shallow, low‐velocity shoreline areas at night, which are most sensitive to flow fluctuations. Habitat time series analyses comparing the natural flow regimen (predam, 1929–1952) with five postdam flow management strategies (1953–2008) show that the natural flow conditions optimize the critical bull trout habitats and that the current strategy best resembles the natural flow conditions of all postdam periods. Late summer flow augmentation for anadromous fish recovery, however, produces higher discharges than predam conditions, which reduces the availability of usable habitat during this critical growing season. Our results suggest that past flow management policies that created sporadic streamflow fluctuations were likely detrimental to resident salmonids and that natural flow management strategies will likely improve the chances of protecting key ecosystem processes and help to maintain and restore threatened bull trout and westslope cutthroat trout populations in the upper Columbia River Basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Dredging or channelization has physically modified the majority (90%) of the 64 000 km of Danish stream network with substantial habitat degradation as a result. Analyses of physical habitat structure in streams, biota, catchment features and regional differences in hydrology, topography and geology have never been carried out in Denmark. Therefore, there is little knowledge of processes, interactions and patterns across the different scales. Physical habitats, catchment parameters and macroinvertebrates were sampled at 39 sites in three major river systems during summer and winter 1993. In‐stream physical conditions and catchment attributes affect the physical habitat structure in Danish lowland streams. Local differences in hydrology, land use, catchment topography and soil types correlated to the in‐stream physical habitat parameters. Local differences in hydrology and topography resulted in a separation of the Suså streams with respect to physical habitats. Mud deposition was pronounced at sites with low discharge and low near‐bed current velocity. Low mud cover was primarily associated with streams with high discharge located in pristine catchments. Stability in the streams was therefore closely linked to in‐stream deposition of fine sediment. Generally, macroinvertebrate community diversity increased as discharge increased. Mud cover negatively affected macroinvertebrate diversity and EPT taxon richness. Regional physical habitat structure and macroinvertebrate community structure were primarily associated with local variations in hydrology, geology and topography. Low‐energy streams were primarily located in the Suså river system and the high‐energy streams in the Gudenå and Storå river systems, leading to extensive deposition of mud during summer. Streams in the Suså river system generally had lower diversity and species richness compared to the streams in the Gudenå and Storå river systems. Hydraulic conditions and substratum dynamics in streams are important when managing lowland streams. This study therefore analysed interactions and parameter correlations between physical habitats, stream stability and catchment attributes as well as macroinvertebrate community structure across multiple scales. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Brown trout (Salmo trutta) were surveyed by mark recapture in a 200‐m section of Gilmore Creek, Minnesota, annually during fall 1989–2013 to assess long‐term trends in abundance. Young‐of‐year (YOY) fish comprised >68% of the population annually, but age 3 and older fish were present in 23 of 25 years. Trout abundance varied irregularly, peaking every 4 to 6 years. Fall densities of YOY brown trout were positively correlated with median annual stream discharge but inversely correlated with 10% exceedance discharge in May, at a nearby gaged stream. Changes in brown trout abundances were synchronized with those of trout in 2 nearby streams. Annual mortality rates (mean = 74%) and sizes of YOY trout were correlated with YOY densities, with high densities (>1.0 fish/m2) producing small size during fall and high cohort mortality. High YOY densities resulted in low proportional size structure‐quality (PSSQ, <20%) 1 and 2 years later. If similar brown trout population dynamics occur in other streams within the region, interpretation of short‐term studies of brown trout (e.g., regulation evaluations, creel surveys, population response to habitat improvement, seasonal movements, and growth rates) may be confounded.  相似文献   

8.
Round gobies have had significant impacts on benthic fish and invertebrate communities in nearshore habitats of the Great Lakes. As round gobies have become more abundant in lake habitats, there has been an expansion of their populations into tributary streams and rivers. We compared stream invertebrate and fish communities in New York tributaries to Lake Erie with round gobies present and absent. Four of six benthic invertebrate metrics differed between streams with and without round gobies. Streams with round gobies present had reduced Shannon diversity, EPT richness, and EPT/chironomid ratios, and increased macroinvertebrate density relative to streams without round gobies, but there was no difference in non-Diptera density, or total taxa richness. None of the four fish metrics examined differed between streams with and without round gobies. However, darters occurred in all streams lacking round gobies, but did not occur in any streams with round gobies. Comparisons with historical fish and macroinvertebrate distributional data support our suspicion of goby-induced community changes. In these New York streams, round gobies seem to have had significant impacts on invertebrate communities via their consumptive behavior, whereas the impacts on fish communities are less evident. If round gobies continue to expand their distribution inland, the resultant alterations in macroinvertebrate communities may impact the suitability of tributary streams as spawning and nursery habitat for several sport fish species and for energy dynamics in tributary streams.  相似文献   

9.
We describe patterns of emergence and downstream movement by recently emerged fry of two non-native salmonids in the Great Lakes region, North America. Our primary objectives were to describe the timing of emergence in relation to spring flooding, and to examine the effects of reach-level complexity of stream habitat on rates of movement. Emergence and movement patterns of coho salmon and brown trout fry were assessed over an eight-week period in two reaches distinguished by differences in channel woody debris. Fry emergence occurred from mid-March to early May, and peaked in early to mid-April. Movement during this period was uncorrelated with upstream densities of resident fry and fish moving downstream did not appear moribund or in poor condition. Nearly twice as many fish moved through the simple reach that lacked woody debris cover even though upstream densities of resident fry were generally greater in the complex reach. The results reported here indicate that peak emergence occurs in close association with the timing of spring floods. Variability in the timing of either emergence or spring floods could have profound effects on the size of coho salmon and brown trout populations within streams of this region. Results from this study further suggest that greater habitat complexity may reduce downstream movements of newly emerged salmonid fry in a natural system.  相似文献   

10.
Large woody debris was explored as a method of restructuring channelized streams to improve salmonid habitat. Whole trees were inserted in sections along a 2 km reach of a channelized stream to determine if large woody debris: (1) increased the abundance and biomass of brown (Salmo trutta) and rainbow trout (Oncorhynchus mykiss); (2) had an effect on physical habitat features; and (3) provided trouts with additional habitat. Trout populations and stream morphology were monitored before and after the introduction of woody debris and compared to control sections lacking woody debris. Abundance and biomass of both brown and rainbow trout increased in the treatment section compared to the control. Maximum and standard deviation of fish total length increased in all sections during summer months. The number of individuals and the standard deviations of total lengths decreased in the control section in winter, but increased in the treatment section. Mean water velocities decreased and number and volume of pools increased in treatment sections. Brown and rainbow trouts sought woody debris structures for cover. We conclude that large woody debris can serve as a method of reconstructing channelized streams to improve salmonid habitat. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Streams in the Pacific Northwest (Oregon, Washington, British Columbia) face rising summer temperatures and increasing anthropogenic influence, with consequences for fish populations. Guidance is needed in small managed watersheds for setting reservoir release rates or for the restriction of water extractions to meet the needs of fish and aquatic ecosystems. Existing environmental flow methods focus on discharge rates and do not typically consider water temperatures, and detailed thermal models are too complex for widespread implementation. We used multiple logistic regression to develop statistical models for estimating the probability of exceeding a salmonid stream temperature threshold of 22 °C as a function of discharge and maximum daily air temperatures. Data required are air temperature, stream temperature and stream discharge over a minimum of one summer. The models are used to make minimum discharge recommendations under varying forecast weather conditions. The method was applied to nine streams in the Pacific Northwest. Minimum recommended discharge generally ranged from 23% to 86% of mean annual discharge and was higher than observed low flows in most streams. Comparison of the new method to existing methods for Fortune Creek in British Columbia indicated that total season discharge volumes could be reduced while meeting thermal requirements. For other streams, it was evident that high water temperatures cannot be managed by increasing discharge, as the discharge required would be greater than natural discharge and higher than achievable by management. The statistical method described in this paper allows for a risk‐based approach to discharge management for fish habitat needs.  相似文献   

12.
Anthropogenic alterations to large rivers ranging from impoundments to channelization and levees have caused many rivers to no longer access the floodplain in a meaningful capacity. Floodplain habitats are important to many riverine fishes to complete their life‐history strategies. The fish community and species of fish that inhabit floodplain habitats are often dictated by the type of habitat and the conditions within that habitat (e.g., temperature, water velocity, depth, and discharge). As mitigation and restoration projects are undertaken, it is imperative that managers understand how various habitat components will affect the fish community in floodplain habitats. We collected fish and habitat data from two restored side channels with different structural designs on the lower Platte River, Nebraska, to determine how habitat variables predicted species diversity and individual species presence. We found a decrease in discharge in the main‐stem river resulted in increased diversity in one of the side channels, with the greatest diversity values occurring during summer. No habitat variables performed well for predicting fish species diversity for an adjacent side channel with more uniform depth and velocity and no groundwater inputs. However, several native riverine fish species in this side channel were shown to be associated with high temperature, dissolved oxygen, main‐stem discharge, and discharge variability. These results highlight the importance of considering the physical design of restored floodplain habitats when attempting to enhance fish communities.  相似文献   

13.
Large woody debris (wood) plays a number of important roles in forested stream ecosystems. Wood in streams provides habitat and flow refugia for fish and invertebrates, and is a site of biofilm production that serves as food for grazing organisms. Logs added to streams are rapidly colonized by invertebrates, and this habitat alteration is accompanied by changes in community composition and functional processes. A multiple habitat, qualitative sampling approach was employed to evaluate macroinvertebrate communities associated with wood habitats in 71 stream reaches in central Michigan and southeastern Minnesota, two agricultural regions in the midwestern United States. Macroinvertebrate taxa were classified with respect to behaviour (e.g. sprawler, clinger, swimmer), as well as trophic/feeding characteristics. These traits were used to examine community structure as a function of wood abundance and distribution. Although wood is not abundant in these streams and logs are generally small in size, wood is a very important habitat in both Michigan and Minnesota: 86% and 95% of the total taxa encountered at Michigan and Minnesota study sites, respectively, were found in wood habitats. Differences in regional patterns in the distribution of taxa across habitats were observed between Michigan and Minnesota. These are believed to result from differences in the number of habitat types available, and the dominant substrate composition. Local invertebrate diversity increased in Michigan, but not Minnesota, with the presence of wood habitats in streams. The presence of wood at a site increased the average taxa richness by 15 and 10 taxa in Michigan and Minnesota, respectively. Macroinvertebrate behavioural attributes and functional traits associated with wood habitats suggest that community traits may vary due to both local difference in flow and the location of wood in the channel. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
The invasive bloody red shrimp, Hemimysis anomala, is a novel organism in the Laurentian Great Lakes region that utilizes benthic and open-water habitat. Hemimysis is predicted to impact nearshore fish communities in the Northeastern USA where its range is expanding, either negatively through predation of shared zooplankton prey or positively as high-calorie prey. In this experimental study, we examined the factors influencing Hemimysis’ benthic habitat selection, vertical distribution, and susceptibility to fish predation. In the presence of fish cues, Hemimysis preferred cobble over other benthic substrates (Dreissena mussels, pebble, or sand) regardless of light conditions; in dark conditions without a fish present, Hemimysis preferred open waters with sand habitat. Light and fish cues also interacted to influence the vertical distribution of Hemimysis, with the majority of mysids selecting depths that minimized perceived cumulative risk. The mean feeding rates of young-of-year (YOY) alewife (Alosa pseudoharengus), adult round goby (Neogobius melanostomus), YOY yellow perch (Perca flavescens), adult pumpkinseed sunfish (Lepomis gibbosus), and YOY lake trout (Salvelinus namaycush) varied among species, prey densities, and substrate (range = 0.77–57 mysids/fish/h). In general, feeding rates were highest for alewife, a non-native species in the Great Lakes basin, and in refuge-free conditions for all species, except for non-native round goby, which fed at similar rates regardless of prey refuge availability. Collectively, our results suggest that fish feeding success is contingent upon the interaction of light and Hemimysis refuge availability due to behavioral modifications of Hemimysis in the presence of fish and adverse light conditions.  相似文献   

15.
Lake trout (Salvelinus namaycush) reared in hatcheries are exposed to an environment and feeding regime that is different from wild lake trout, and are stocked at substantially larger sizes with higher lipid reserves. In addition to differences in diet and growth, this early experience may alter habitat use compared to the wild cohort. We used seasonal data on the depth and temperature distribution of wild and stocked juvenile lake trout to test for differences in habitat use and inform sampling strategies to evaluate annual recruitment. Bottom trawling was conducted from 2015 to 2019 in the central basin of Lake Champlain every two to four weeks during the ice-free season. Differences in distribution of wild and stocked lake trout were most pronounced during thermal stratification, when wild juveniles were more abundant than stocked juveniles at shallower depths and warmer temperatures and stocked juveniles were more abundant at deeper depths and colder temperatures. Temperature preferences may be a consequence of different early rearing environments; wild lake trout are acclimated to lake temperatures and forage, whereas stocked fish entered the lake with high lipid content and little foraging experience. Unbiased assessment of the proportion of wild lake trout and growth and survival of the entire juvenile lake trout population using bottom trawl sampling should either take place in the pre- and post-stratification seasons when wild and stocked fish are at the same depths, or include the full range of depths and temperatures that wild and stocked fish occupy during the stratified period.  相似文献   

16.
Reach‐scale physical habitat assessment scores are increasingly used to make decisions about management. We characterized the spatial distribution of hydraulic habitat characteristics at the reach and sub‐reach scales for four fish species using detailed two‐dimensional hydraulic models and spatial analysis techniques (semi‐variogram analyses). We next explored whether these hydraulic characteristics were correlated with commonly used reach‐scale geomorphic assessment (RGA) scores, rapid habitat assessment (RHA) scores, or indices of fish biodiversity and abundance. River2D was used to calculate weighted usable areas (WUAs) at median flows, Q50, for six Vermont streams using modelled velocity, depth estimates, channel bed data and habitat suitability curves for blacknose dace (Rhinichthys atratulus), brown trout (Salmo trutta), common shiner (Notropis cornutus) and white sucker (Catostomus commersoni) at both the adult and spawn stages. All stream reaches exhibited different spatial distributions of WUA ranging from uniform distribution of patches of high WUA to irregular distribution of more isolated patches. Streams with discontinuous, distinct patches of high score WUA had lower fish biotic integrity measured with the State of Vermont's Mixed Water Index of Biotic Integrity (MWIBI) than streams with a more uniform distribution of high WUA. In fact, the distribution of usable habitats may be a determining factor for fish communities. A relationship between predicted WUAs averaged at the reach scale and RGA or RHA scores was not found. Future research is needed to identify the appropriate spatial scales to capture the connections between usable patches of stream channel habitat. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Mechanically reshaping stream banks is a common practice to mitigate bank erosion in streams that have been extensively channelised and lowered for land drainage. A common perception regarding this activity is that fish populations will be largely unaffected, at least in the short term, because the low‐flow wetted channel remains undisturbed. However, the response of fish populations to this practice has rarely been quantitatively evaluated. Using a Before‐After‐Control‐Impact design, we assessed fish community responses to a catchment‐scale bank reshaping event in a fourth‐order low‐gradient stream that drains an intensive agricultural landscape. Quantitative electric fishing and fish habitat data were collected 2 months before and annually for 3 years after the reshaping event. After reshaping, deposited fine sediment levels increased in impact reaches, and there was a significant reduction in anguillid eel biomass (by 49%). In contrast, densities of obligate benthic gobiid bully species increased significantly in impact reaches—potentially due to reduced predation pressure from eels. Three years after bank reshaping, fish community structure had largely returned to its preimpact state in the reshaped areas. Our results suggest that, even in highly modified stream channels, further bank modification can reduce instream habitat quality and displace eels for at least 1 year. Managers should endeavour to use bank erosion control measures that conserve bank‐edge cover, especially in streams with populations of anguillid eels, because these fish are declining globally.  相似文献   

18.
Urbanization results in major changes to stream morphology and hydrology with the latter often cited as a primary stressor of urban stream ecosystems. These modifications unequivocally alter stream hydraulics, but little is known about such impacts. Hydraulic changes due to urbanization were demonstrated using two‐dimensional hydrodynamic model simulations, comparing urban and non‐urban stream reaches. We investigated three ecologically relevant hydraulic characteristics: bed mobilization, retentive habitat, and floodplain inundation, using hydraulic metrics bed shear stress, shallow slow‐water habitat (SSWH) area, and floodplain inundation area. We hypothesized that urbanization would substantially increase bed mobilization, decrease retentive habitat, and due to increased channel size would decrease floodplain inundation. Relative percent area of bed disturbance was 4 times higher, compared with that of the non‐urban stream at bankfull discharge. SSWH availability rapidly diminished in the urban stream as discharge increased, with SSWH area and patch size 2 times smaller than the non‐urban stream for a frequently occurring flow 0.7 times bankfull discharge. Floodplain inundation decreased in frequency and duration. These results demonstrate changes in hydraulics due to urbanization that may impact on physical habitat in streams. New “water sensitive” approaches to stormwater management could be enhanced by specification of hydraulic regimes capable of supporting healthy stream habitats. We propose that a complete management approach should include the goals of restoration and protection of natural hydraulic processes, particularly those that support ecological and geomorphic functioning of streams.  相似文献   

19.
The conservation of ecologically and economically important species, as well as the management of invasive species, benefits from the ability to make broad-scale predictions of habitat. In this paper, we revised an existing substrate size model based upon stream power to include variables that are readily-quantifiable in a Geographic Information System (GIS) (i.e. stream slope and drainage area). We found no significant difference between slopes measured in the field using surveying techniques and slopes measured in a GIS using a 10 m digital elevation model and high resolution stream dataset. GIS-derived drainage areas and those measured with hand-delineations were also statistically similar. The revised model can be applied using both GIS and field-derived variables to predict median particle sizes from stream power in northeastern Ohio streams draining to Lake Erie. Integration of such models into a GIS could result in regional estimates of the amount and location of preferred fish habitat, which has important applications in fisheries management. In particular, we provide examples of how the predictive substrate model could improve assessment methodologies for invasive sea lamprey, thereby improving eradication measures, and how we may better understand geographic linkages between walleye spawning and nursery habitats.  相似文献   

20.
Large-scale reintroduction programs for landlocked Atlantic salmon Salmo salar are ongoing in Lakes Ontario and Champlain. Commonly, these programs involve stocking hatchery reared juveniles into streams and thus, quantifying the in situ habitat use of stocked fish can help support these efforts. To examine habitat use, we stocked young-of-the-year (YOY) Atlantic salmon into 14 reaches of the Boquet River in the Lake Champlain Basin. The habitat used by YOY Atlantic salmon, measured from microhabitats that were used versus not used, differed between early and late summer for water depth. In early summer, YOY Atlantic salmon used a more narrow range of habitats compared to late summer. However, in both early and late summer, YOY most often used intermediate values in habitat variables except for water velocity in early summer. In early summer, YOY Atlantic salmon had the highest probability of using a water depth of 26 cm, a water velocity of 1 cm/sec, and a pebble substrate. In late summer, the probability of use was highest at a water depth of 61 cm, a water velocity of 11 cm/sec, and a pebble substrate. Our results show that stocked landlocked YOY Atlantic salmon use similar habitats to anadromous populations and may help managers when determining stocking locations or habitat alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号