首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of the study was to evaluate the occurrence of symptoms and the perception of poor indoor air quality among the occupants of houses and apartments with different ventilation systems. The study population consisted of the 473 occupants of 242 dwellings in the Helsinki metropolitan area who responded to a self-administered questionnaire (response rate 93.1%) after a two-week period of indoor air quality measurements. The symptoms of interest were those often related to poor indoor air quality including dryness or itching of the skin; dryness, irritation or itching of the eyes; nasal congestion (“blocked nose”) nasal dry-ness; nasal discharge (“runny nose”); sneezing; cough; breathlessness; headache or migraine; and lethargy, weakness or nausea. Perception of coldness; warm-ness; draught; dryness; stuffiness; and sufficiency of air exchange was also requested. The age-standardized period prevalences of the symptoms and complaints were systematically more common among the occupants of the apartments than those of the houses. The occupants of the houses with natural ventilation seemed to have more symptoms and complaints than those with balanced ventilation. However, in the apartments with balanced ventilation the occupants reported, in general, more symptoms and complaints than those with natural ventilation.  相似文献   

2.
We compare data sets from two different Swedish studies which included measuremem of the indoor radon concentration both in 1955 and in 1990 in 178 of the same houses. The purpose is to learn more about how the indoor radon concentration changes over a time scale of years in the same houses. Many sources of both systematic and random errors exist when comparing these types of data sets. Specific types of errors are due to uncertainties in the calibration of the epuipment, the influence of the weather, the time lengths of sampling, airing of some of the dwellings, and changes in ventilation rates. The data indicate a general increase of the radon concentration in the dwellings between 1955 and 1990, with a 1990/1955 ratio of the averages of 1.3. The average radon concentration in all alum shale houses, (where the building material is a source of radon) in 1990 versus 1955 is 204 ± 22 and 163 ± 23 Bq/m3 and in non-alum shale houses is 62 ± 8 and 42 ± 7 Bq/m3, respectively.  相似文献   

3.
A pilot study was carried out to establish techniques and procedures for the measurement of indoor radiation in Denmark. A passive cup dosemeter was designed containing CR39 track detectors and TLD's to measure radon and external radiation, respectively.A total of 82 dwellings were selected covering most regions of the country. The dwellings were monitored in two three-month periods, one in winter and the other in summer. The average dose rate in air from external radiation was 0.09 μGy h?1. In the winter the average radon concentrations were 88 Bq m?3 and 24 Bq m?3 for single-family houses and flats, respectively; and in the summer the corresponding values were 52 Bq m?3 and 19 Bq m?3.  相似文献   

4.
Tracer gas studies were conducted around four model houses in a wind tunnel, and around one house in the field, to quantify re-entrainment and dispersion of exhaust gases released from residential indoor radon reduction systems. Re-entrainment tests in the field suggest that active soil depressurization systems exhausting at grade level can contribute indoor radon concentrations 3 to 9 times greater than systems exhausting at the eave. With a high exhaust concentration of 37,000 Bq/m3, the indoor contribution from eave exhaust re-entrainment may be only 20% to 70% of the national average ambient level in the U.S. (about 14 Bq/m3), while grade-level exhaust may contribute 1.8 times the ambient average. The grade-level contribution would drop to only 0.18 times ambient if the exhaust were 3,700 Bq/m3. Wind tunnel tests of exhaust dispersion outdoors suggest that grade-level exhaust can contribute mean concentrations beside houses averaging 7 times greater than exhaust at the eave, and 25 to 50 times greater than exhaust midway up the roof slope. With 37,000 Bq/m3 in the exhaust, the highest mean concentrations beside the house could be less than or equal to the ambient background level with eave and mid-roof exhausts, and 2 to 7 times greater than ambient with grade exhausts.  相似文献   

5.
This paper presents pollutant concentrations and performance data for code-required mechanical ventilation equipment in 23 low-income apartments at 4 properties constructed or renovated 2013-2017. All apartments had natural gas cooking burners. Occupants pledged to not use windows for ventilation during the study but several did. Measured airflows of range hoods and bathroom exhaust fans were lower than product specifications. Only eight apartments operationally met all ventilation code requirements. Pollutants measured over one week in each apartment included time-resolved fine particulate matter (PM2.5), nitrogen dioxide (NO2), formaldehyde and carbon dioxide (CO2) and time-integrated formaldehyde, NO2 and nitrogen oxides (NOX). Compared to a recent study of California houses with code-compliant ventilation, apartments were smaller, had fewer occupants, higher densities, and higher mechanical ventilation rates. Mean PM2.5, formaldehyde, NO2, and CO2 were 7.7 µg/m3, 14.1, 18.8, and 741 ppm in apartments; these are 4% lower, 25% lower, 165% higher, and 18% higher compared to houses with similar cooking frequency. Four apartments had weekly PM2.5 above the California annual outdoor standard of 12 µg/m3 and also discrete days above the World Health Organization 24-hour guideline of 25 µg/m3. Two apartments had weekly NO2 above the California annual outdoor standard of 30 ppb.  相似文献   

6.
We assessed 45 multifamily buildings (240 apartments) from Finland and 20 (96 apartments) from Lithuania, out of which 37 buildings in Finland and 15 buildings in Lithuania underwent energy retrofits. Building characteristics, retrofit activities, and energy consumption data were collected, and Indoor Air Quality (IAQ) parameters, including carbon monoxide (CO), nitrogen dioxide (NO2), formaldehyde (CH2O), selected volatile organic compounds (benzene, toluene, ethylbenzene, and xylenes (BTEX), radon, and microbial content in settled dust were measured before and after the retrofits. After the retrofits, heating energy consumption decreased by an average of 24% and 49% in Finnish and Lithuanian buildings, respectively. After the retrofits of Finnish buildings, there was a significant increase in BTEX concentrations (estimated mean increase of 2.5 µg/m3), whereas significant reductions were seen in fungal (0.6‐log reduction in cells/m2/d) and bacterial (0.6‐log reduction in gram‐positive and 0.9‐log reduction in gram‐negative bacterial cells/m2/d) concentrations. In Lithuanian buildings, radon concentrations were significantly increased (estimated mean increase of 13.8 Bq/m3) after the retrofits. Mechanical ventilation was associated with significantly lower CH2O concentrations in Finnish buildings. The results and recommendations presented in this paper can inform building retrofit studies and other programs and policies aimed to improve indoor environment and health.  相似文献   

7.
The objective of this study was to quantify the influence of ventilation systems on indoor particle concentrations in residential buildings. Fifteen occupied, single‐family apartments were selected from three sites. The three sites have three different ventilation systems: unbalanced mechanical ventilation, balanced mechanical ventilation, and natural ventilation. Field measurements were conducted between April and June 2012, when outdoor air temperatures were comfortable. Number concentrations of particles, PM2.5 and CO2, were continuously measured both outdoors and indoors. In the apartments with natural ventilation, I/O ratios of particle number concentrations ranged from 0.56 to 0.72 for submicron particles, and from 0.25 to 0.60 for particles larger than 1.0 μm. The daily average indoor particle concentration decreased to 50% below the outdoor level for submicron particles and 25% below the outdoor level for fine particles, when the apartments were mechanically ventilated. The two mechanical ventilation systems reduced the I/O ratios by 26% for submicron particles and 65% for fine particles compared with the natural ventilation. These results showed that mechanical ventilation can reduce exposure to outdoor particles in residential buildings.  相似文献   

8.
Results of a preliminary national survey on radon in houses in Belgium are presented. The indoor radon concentration was determined in 1983 in 79 houses with passive integrating detectors. In 77 of the examined cases the radon concentration is less than 250 Bq/m3. The highest reported value is 330 Bq/m3. The frequency distribution is found to be log-normal with a geometric mean of 41 Bq/m3 and a geometric standard deviation of 1.7. The influence of some human and environmental parameters is also studied. Because of the limited scale of the pilot study only a tendency can be derived.  相似文献   

9.
Bioaerosol concentrations in residential buildings located in the Northeastern US have not been widely studied. Here, in 2011-2015, we studied the presence and seasonal variability of culturable fungi and bacteria in three multi-family apartment buildings and correlated the bioaerosol concentrations with building ventilation system types and environmental parameters. A total of 409 indoor and 86 outdoor samples were taken. Eighty-five percent of investigated apartments had indoor-outdoor (I/O) ratios of culturable fungi below 1, suggesting minimal indoor sources of fungi. In contrast, 56% of the apartments had I/O ratios for culturable bacteria above 1, indicating the prominence of indoor sources of bacteria. Culturable fungi I/O ratios in apartments serviced by central heating, ventilation, and air-conditioning (HVAC) system were lower than those in apartments with window AC. The type of ventilation system did not have a significant effect on the presence of indoor culturable bacteria. A significant positive association was determined between indoor dew point (DP) levels and indoor culturable fungi (P < .001) and bacteria (P < .001), regardless of ventilation type. Also, residents in apartments with central HVAC did not experience extreme DP values. We conclude that building ventilation systems, seasonality, and indoor sources are major factors affecting indoor bioaerosol levels in residential buildings.  相似文献   

10.
Solid state nuclear track detectors were used in a regional survey of radon in indoor air. The study area comprises seven rural municipalities and two towns in an area of 80×50 km2 with a population of about 65,000. Measurements were made in 754 houses in 31 subareas.The highest and lowest subarea means were 1,200 Bq/m3 and 95 Bq/m3, respectively. The estimated mean for the whole area was 370 Bq/m3. The concentrations 2,000 Bq/m3 and 800 Bq/m3 were exceeded in 32 and 90 houses, respectively.The present lung cancer incidence does not differ significantly from the national mean.  相似文献   

11.
Abstract To investigate the effect of ventilation on indoor radon (222Rn), simultaneous measurements of radon concentrations and air change rates were made in 117 Danish naturally ventilated slab-on-grade houses built during the period 1984–1989. Radon measurements (based on CR-39 alpha-track detectors) and air change rate measurements (based on the perfluorocarbon tracer technique; PFT) were in the ranges 12–620 Bq m?3 and 0.16?0.96 h?1, respectively. Estimates of radon entry rates on the basis of such time-averaged results are presented and the associated uncertainty is discussed. It was found that differences in radon concentrations from one house to another are primarily caused by differences in radon entry rates whereas differences in air change rates are much less important (accounting for only 80,0% of the house-to-house variation). In spite of the large house-to-house variability of radon entry rates it was demonstrated, however, that natural ventilation does have a significant effect on the indoor radon concentration. Most importantly, it was found that the group of houses with an air change rate above the required level of 0.5 h?1 on average had an indoor radon concentration that was only 50% (0.5±0.1) of that of the group of houses with air change rates below 0.5 h?1. The reducing effect of increased natural ventilation on the indoor radon concentration was found to be due mainly to dilution of indoor air. No effect could be seen regarding reduced radon entry rates.  相似文献   

12.
The occupancy level of dwellings is an important parameter to know to determine the energy efficiency, energy use and indoor air quality, especially in low-energy buildings where the user-related energy uses, such as household electricity and domestic hot water heating, are significant parts of the energy balance in a building. For residential buildings, there is a lack of occupancy level data, which also needs to be resolved over time, in a way so that both short term and long term variations can be described. As a part of an ongoing study, occupancy levels were measured as building average levels in 18 apartment buildings containing 342 apartments in total with readings every 30 min for more than a year. Averages and standard deviations of occupancy level, and variation in occupancy during the year, week and day respectively are presented. The results show a highly varying occupancy level over time, which indicates the potential of demand controlled ventilation in dwellings.  相似文献   

13.
High radon concentration (average 410 kBq m-3) has been measured in a tunnel of a uranium mine, located 15-55 m below the village of Kovágószolos, Hungary. The mine was closed in 1997; the artificial ventilation of the tunnel was then terminated and recultivation works begun. In this paper, a study has been made as to whether the tunnel has an influence on the radon concentration of surface dwellings over the mining tunnel. At different distances from the surface projection of the mining tunnel, radon concentration, the gamma dose, radon exhalation and radon concentration of soil gas were measured. The average radon concentration in the dwellings was 483 Bq m-3. Significantly higher radon concentrations (average 667 Bq m-3) were measured in houses within +/-150 m from the surface projection of the mining tunnel +50 m, compared with the houses further than the 300-m belt (average 291 Bq m-3). The average radon concentration of the soil gas was 88.8 kBq m-3, the average radon exhalation was 71.4 Bq m-2 s-1 and higher values were measured over the passage as well. Frequent fissures crossing the passage and running up to the surface and the high radon concentration generated in the passage (average 410 kBq m-3) may influence the radon concentration of the houses over the mining tunnel.  相似文献   

14.
Abstract The objective of this study was to assess the magnitude and balance of mechanical ventilation in the rooms of Helsinki metropolitan office buildings with different types of ventilation systems. A random sample of 50 office buildings was selected from the Building Registry. Of these buildings, the 33 that have a mechanical ventilation system were included in this study. Most office buildings in the Helsinki metropolitan area have a ducted supply and exhaust system and hot water radiator heating. Air recirculation is used in about half of the buildings which have a mechanical supply and exhaust system. The average exhaust airflow was 1.2 L/s, m2 (SD 0.73) or 17.2 L/s per person (SD 11.6). The variation of the airflows was found to be very high among the buildings, and among the rooms within the buildings. Therefore, even though the ventilation rates on average comply with the Finnish building code, it was found that many people were working in offices with airflows which were either too low or unnecessarily high.  相似文献   

15.
The principal results of a preliminary study made on indoor radiation levels in Ireland are presented. During the period 1983–1984 measurements were made in over 250 houses. Most measurements were made using passive devices: TLDs for penetrating radiation and CR-39 alpha track plastic detectors for radon measurements. The median value of the doses from penetrating radiation was 0.78 milligray/year with a maximum value of 1.47 m Gy/year detected. The radon concentrations showed a large degre of variability with a median value of 43 Bq/m3. About 10% of the houses had radon air concentrations in excess of 100 Bq/m3 with a maximum of 700 Bq/m3 being recorded. A tentative analysis of the data with regard to the geological situation is presented.  相似文献   

16.
This paper presents the results of a survey of floor areas and combustible contents in multi-family dwellings such as semi-detached houses, town houses and low-rise apartments. The survey was primarily based on measurements and photographic information obtained from real-estate websites. This is a novel method, which reduces the effort required to conduct fire load surveys in residential buildings. In addition to quantifying combustible contents, an important objective of the survey was to determine the similarities in combustible contents and configurations of these dwellings, which could be used in designing fire experiments. The survey provided an insight into the types and quantity of combustible contents found in the dwellings, as well as the types of floor configurations and other information that are pertinent to fire issues. Typical furnishings that constituted a significant portion of the movable fire load were identified and possible values of fire load densities were calculated for rooms such as: kitchens, dining rooms, living rooms and bedrooms. The average fire load densities in various rooms were estimated to be: kitchens—807 MJ/m2; dining rooms—393 MJ/m2; living rooms—412 MJ/m2; basement living rooms—288 MJ/m2; primary bedrooms—534 MJ/m2; and, secondary bedrooms—594 MJ/m2. Although kitchens had the highest fire load densities the actual fire load (heat content) was found to be lower than bedrooms, which have a higher fire load due to the presence of mattresses, clothing and carpeting.  相似文献   

17.
Yang W  Lee K  Chung M 《Indoor air》2004,14(2):105-111
Indoor air quality can be affected by indoor sources, ventilation, decay and outdoor levels. Although technologies exist to measure these factors, direct measurements are often difficult. The purpose of this study was to develop an alternative method to characterize indoor environmental factors by multiple indoor and outdoor measurements. Daily indoor and outdoor NO2 concentrations were measured for 30 consecutive days in 28 houses in Brisbane, Australia, and for 21 consecutive days in 37 houses in Seoul, Korea. Using a mass balance model and regression analysis, penetration factor (ventilation rate divided by the sum of ventilation rate and deposition constant) and source strength factor (source strength divided by the sum of ventilation rate and deposition constant) were calculated using multiple indoor and outdoor measurements. Subsequently, the ventilation rate and NO2 source strength were estimated. Geometric means of ventilation rate were 1.44 air change per hour (ACH) in Brisbane, assuming a residential NO2 deposition constant of 1.05/h, and 1.36 ACH in Seoul, with the measured residential NO2 deposition constant of 0.94/h. Source strengths of NO2 were 15.8 +/- 18.2 and 44.7 +/- 38.1 microg/m3/h in Brisbane and Seoul, respectively. In conclusion, indoor environmental factors were effectively characterized by this method using multiple indoor and outdoor measurements.  相似文献   

18.
Treatment of fresh air in ventilation systems for air-conditioned offices consumes a significant amount of energy and affects the indoor air quality (IAQ). In this study, energy impact on the ventilation systems was examined against certain IAQ objectives for indoor airborne bacteria exposure risk in air-conditioned offices of Hong Kong. The relationship between thermal energy consumptions and indoor airborne bacteria exposure levels based on regional surveys was investigated. The thermal energy consumptions of ventilation systems operating for carbon dioxide (CO2) exposure concentrations between 800 and 1200 ppmv for typical office buildings and the corresponding failure probability against some target bacteria exposure levels were evaluated. The results showed that, for a reference indoor environment at a CO2 exposure concentration of 1000 ppmv, the predicted average thermal energy saving of ventilation system for a unit increment of the expected risk of unsatisfactory IAQ of 1% was 55 MJ m−2 yr−1 and for a unit decrement of 1%, the predicted additional thermal energy consumption was 58 MJ m−2 yr−1 respectively. This study would be a useful source of reference in evaluation of the energy performance of ventilation strategies in air-conditioned offices at a quantified exposure risk of airborne bacteria.  相似文献   

19.
《Energy and Buildings》1998,28(2):127-136
This paper presents the results of ambient and indoor air temperature measurements in the dwellings of Solar Village-3, Athens. The temperatures were monitored centrally using a Data Acquisition System and the measurements cover a 37 continuous month period, from 1/12/88 to 31/12/91. The main effort in this paper was given to the appropriate elaboration and presentation of indoor air temperature measurements in all buildings of Solar Village-3 for all the evaluation period as well as detailed data for representative dwellings. The elaborated data are average, maximum and minimum daily values for buildings, apartments and rooms, as well as daily variation of half hourly values. The daily average temperatures of each apartment are weighted average of the daily mean temperatures of each room, which in turn is the mean value of 48 measurements/day (every 30 min). Analysis shows that indoor temperatures measured during the evaluation period contributed to prevail thermal comfort conditions in winter as well in summer days. Analysis also shows that buildings of high thermal capacity and proper insulation have no need for air conditioning.  相似文献   

20.
In buildings which were built within the last 15 to 20 years, or which have been retrofitted, and which do notfeature a mechanical ventilation system, air changes between 0.01 h?1 and 0.5 h?1 were measured while windows were closed. In the bedrooms of such buildings, when doors and windows were closed, CO2 concentrations of up to 4300 ppm were measured whereby the 1500 ppm limit was often exceeded. Simulation calculations and diverse measurements using different door positions with simultaneously closed windows have shown that with the door open more than 10 cm, and a minimal air exchange in the whole of an apartment of 0.1 h?1, a CO2 concentration of I500 ppm was not or was only insignifiantly exceeded even after 10 hours. Investigations in a dwelling fined with a mechanical ventilation system have shown that air quality and the indoor climate parameters were in an optimal range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号